TOP Contributors

  1. MIKROE (2660 codes)
  2. Alcides Ramos (356 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137009 times)
  2. FAT32 Library (70134 times)
  3. Network Ethernet Library (56028 times)
  4. USB Device Library (46350 times)
  5. Network WiFi Library (41966 times)
  6. FT800 Library (41291 times)
  7. GSM click (29055 times)
  8. mikroSDK (26489 times)
  9. PID Library (26452 times)
  10. microSD click (25413 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EMG click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 93 times

Not followed.

License: MIT license  

EMG click measures the electrical activity produced by the skeletal muscles. It carries MCP609 operational amplifier and MAX6106 micropower voltage reference.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EMG click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EMG click" changes.

Do you want to report abuse regarding "EMG click".

  • Example 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


EMG click

EMG click measures the electrical activity produced by the skeletal muscles. It carries MCP609 operational amplifier and MAX6106 micropower voltage reference.

emg_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2021.
  • Type : ADC type

Software Support

We provide a library for the EMG Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EMG Click driver.

Standard key functions :

  • emg_cfg_setup Config Object Initialization function.

    void emg_cfg_setup ( emg_cfg_t *cfg );
  • emg_init Initialization function.

    err_t emg_init ( emg_t *ctx, emg_cfg_t *cfg );

Example key functions :

  • emg_read_an_pin_value EMG read AN pin value function.

    err_t emg_read_an_pin_value ( emg_t *ctx, uint16_t *data_out );
  • emg_read_an_pin_voltage EMG read AN pin voltage level function.

    err_t emg_read_an_pin_voltage ( emg_t *ctx, float *data_out );

Example Description

This is an example which demonstrates the use of EMG Click board.

The demo application is composed of two sections :

Application Init

Initializes ADC and timer counter.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    emg_cfg_t emg_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    emg_cfg_setup( &emg_cfg );
    EMG_MAP_MIKROBUS( emg_cfg, MIKROBUS_1 );
    if ( ADC_ERROR == emg_init( &emg, &emg_cfg ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    time = 0;
    log_info( &logger, " Application Task " );
}

Application Task

Reads ADC value and sends results on serial plotter every 5 ms.


void application_task ( void )  {
    uint16_t emg_an = 0;
    if ( emg_read_an_pin_value( &emg, &emg_an ) == ADC_SUCCESS ){
        log_printf( &logger, " %u,%lu\r\n ", emg_an, time );
    }
    time += 5;
    Delay_ms ( 5 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EMG

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Clock Gen 3 click

0

Clock Gen 3 Click features a low power self-contained digital frequency source providing a precision frequency from 1kHz to 68MHz, set through a serial port.

[Learn More]

FTDI click

0

FTDI Click is a compact add-on board that provides a high-speed USB to a serial interface converter. This board features the FT2232H, a 5th-generation high-speed USB 2.0 to a serial UART/I2C/SPI interface converter from FTDI. The entire USB protocol is handled on the chip (FTDI USB drivers required), making this board ideal for various USB applications. Besides a selectable interface and a standalone operation possibility, it also includes an EEPROM which contains the USB configuration descriptors for the FT2232H and one DA converter for additional reference in user-configurable applications.

[Learn More]

Clock Gen 6 click

0

Clock Gen 6 Click is a compact add-on board representing a digital oscillator solution. This board features the MIC1557, an IttyBitty CMOS RC oscillator designed to provide rail-to-rail pulses for precise time delay or frequency generation from Microchip Technology. The MIC1557 has a single threshold and trigger connection, internally connected, for astable (oscillator) operation only. It also has an enable/reset control signal routed to the RST pin of the mikroBUS™ socket, which controls the bias supply to the oscillator’s internal circuitry and optimizes power consumption used for oscillator power ON/OFF purposes. In addition, it provides the ability to select the desired frequency programmed via a digital potentiometer, the MAX5401.

[Learn More]