TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136884 times)
  2. FAT32 Library (70004 times)
  3. Network Ethernet Library (56000 times)
  4. USB Device Library (46305 times)
  5. Network WiFi Library (41931 times)
  6. FT800 Library (41208 times)
  7. GSM click (29014 times)
  8. PID Library (26423 times)
  9. mikroSDK (26398 times)
  10. microSD click (25386 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 113 times

Not followed.

License: MIT license  

DC MOTOR 2 click carries the TB6593FNG driver IC for direct current motors. With two pairs of screw terminals (power supply and outputs), the click board can drive motors with voltages from 2.5 to 13V (output current of up to 1.2 amps with peaks up to 3.2 amps) . The PWM signal drives the motor while the IN1 and IN2 pins provide binary direction signals that set the direction of the motor (clockwise or counter clockwise), or apply stop or short brake functions.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 2 click" changes.

Do you want to report abuse regarding "DC Motor 2 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC Motor 2 click

<DC MOTOR 2 click carries the TB6593FNG driver IC for direct current motors. With two pairs of screw terminals (power supply and outputs), the click board can drive motors with voltages from 2.5 to 13V (output current of up to 1.2 amps with peaks up to 3.2 amps) . The PWM signal drives the motor while the IN1 and IN2 pins provide binary direction signals that set the direction of the motor (clockwise or counter clockwise), or apply stop or short brake functions.>

dcmotor2_click.png

click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the DcMotor2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DcMotor2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dcmotor2_cfg_setup ( dcmotor2_cfg_t *cfg );

  • Initialization function.

    DCMOTOR2_RETVAL dcmotor2_init ( dcmotor2_t ctx, dcmotor2_cfg_t cfg );

  • Click Default Configuration function.

    void dcmotor2_default_cfg ( dcmotor2_t *ctx );

Example key functions :

  • This function sets the IN1/IN2 pins to 0/1 and makes the motor spin counter clockwise.

    void dcmotor2_spin_counter_clockwise ( dcmotor2_t *ctx );

  • This function sets the IN1/IN2 pins to 1/0 and makes the motor spin clockwise.

    void dcmotor2_spin_clockwise ( dcmotor2_t *ctx );

  • This function sets the IN1/IN2 pins to 1/1 and forces the motor to break.

    void dcmotor2_pull_brake ( dcmotor2_t *ctx );

  • This function sets the IN1/IN2 pins to 0/0 and stops the motor completely.

    void dcmotor2_stop_motor ( dcmotor2_t *ctx );

Examples Description

This library contains API for the DC Motor 2 Click driver. This example showcases how to initialize and use the DC Motor 2 click. The click contains a Driver IC for DC motors which can spin the motor clockwise, counter-clockwise, break it and completely stop the motor. The example needs a DC motor and a power supply in order to work.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and click modules.


void application_init ( )
{
    log_cfg_t log_cfg;
    dcmotor2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 100 );

    //  Click initialization.

    dcmotor2_cfg_setup( &cfg );
    DCMOTOR2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    Delay_ms ( 100 );
    dcmotor2_init( &dcmotor2, &cfg );
    dcmotor2_pwm_start( &dcmotor2 );
    Delay_ms ( 1000 );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

This is an example that demonstrates the use of the DC Motor 2 Click board. DC Motor 2 Click communicates with register via PWM interface. It shows moving in the Clockwise direction from slow to fast speed and from fast to slow speed, then rotating Counter Clockwise, Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( )
{    
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    if ( dcmotor_direction == 1 )
    {
        dcmotor2_pull_brake ( &dcmotor2 );
        dcmotor2_spin_clockwise ( &dcmotor2 );
        log_printf( &logger, "> CLOCKWISE <\r\n" );
        dcmotor2_enable_motor ( &dcmotor2 );
    }
    else
    {
        dcmotor2_pull_brake ( &dcmotor2 );
        dcmotor2_spin_counter_clockwise ( &dcmotor2 );
        log_printf( &logger, "> COUNTER CLOCKWISE <\r\n" );
        dcmotor2_enable_motor ( &dcmotor2 );
    }

    dcmotor2_set_duty_cycle ( &dcmotor2, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;        
        if ( dcmotor_direction == 1 )
        {
            dcmotor_direction = 0;
        }
        else if ( dcmotor_direction == 0 )
        {
            dcmotor_direction = 1;
        }
    }
    duty_cnt += duty_inc;

}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AD SWIO 2 click

0

AD-SWIO 2 Click is a quad-channel software configurable input/output solution based on AD74413R, for building and process control application. The AD74413R is a quad-channel software configurable input/output solution for building and process control applications. The device provides a fully integrated single chip solution for input and output operation. The AD-SWIO 2 Click contains four 13-bit DACs, one per chanal, and 16-bit Σ-∆ ADC.

[Learn More]

FRAM 2 click

0

FRAM 2 click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

[Learn More]

Spirit 2 click

5

Spirit 2 Click features the SP1ML-915, an ultra-low power, fully integrated RF module, which operates at 915 MHz ISM band.

[Learn More]