TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136735 times)
  2. FAT32 Library (69950 times)
  3. Network Ethernet Library (55941 times)
  4. USB Device Library (46266 times)
  5. Network WiFi Library (41886 times)
  6. FT800 Library (41170 times)
  7. GSM click (28983 times)
  8. PID Library (26413 times)
  9. mikroSDK (26360 times)
  10. microSD click (25376 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SRAM click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: SRAM

Downloaded: 174 times

Not followed.

License: MIT license  

SRAM Click presents additional 1Mbit SRAM memory that can be added to device.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SRAM click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SRAM click" changes.

Do you want to report abuse regarding "SRAM click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


SRAM click

SRAM Click presents additional 1Mbit SRAM memory that can be added to device.

sram_click.png

click Product page


Click library

  • Author : Mihajlo Djordjevic
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Sram Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Sram Click driver.

Standard key functions :

  • Config Object Initialization function.

    void sram_cfg_setup ( sram_cfg_t *cfg );

  • Initialization function.

    SRAM_RETVAL sram_init ( sram_t ctx, sram_cfg_t cfg );

  • Click Default Configuration function.

    void sram_default_cfg ( sram_t *ctx );

Example key functions :

  • Function write the 8-bit data to the target 24-bit register address of 23LC1024 chip.

    void sram_write_byte( sram_t *ctx, uint32_t reg_address, uint8_t write_data );

  • Function read the 8-bit data to the target 24-bit register address of 23LC1024 chip.

    uint8_t sram_read_byte( sram_t *ctx, uint32_t reg_address );

Examples Description

SRAM Click write and read data from 23LC1024 Serial RAM device.

The demo application is composed of two sections :

Application Init

Application Init performs Logger and Click initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    sram_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, "     Application  Init\r\n" );
    Delay_ms ( 100 );

    //  Click initialization.

    sram_cfg_setup( &cfg );
    SRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    sram_init( &sram, &cfg );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ------ SRAM Click  ----- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );

    log_printf( &logger, " -- Initialization done --\r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}

Application Task

SRAM Click communicates with register via SPI protocol by write data to and read data from 23LC1024 Serial RAM device. Results are being sent to the UART where you can track their changes. All data logs on USB UART for aproximetly every 5 sec.


void application_task ( void )
{
    log_printf( &logger, " Writing text :\r\n" );

    for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
    {
        sram_write_byte( &sram, n_cnt, send_buffer[ n_cnt ] );
        Delay_ms ( 100 );

        log_printf( &logger, "%c", send_buffer[ n_cnt ] );

        mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
    }

    log_printf( &logger, "\r\n" );
    log_printf( &logger, " Read text :\r\n" );
    log_printf( &logger, "%s", &mem_data[ 0 ] );
    log_printf( &logger, "\r\n" );
    log_printf( &logger, "--------------------------\r\n" );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Sram

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DC Motor 23 click

0

DC Motor 23 Click is a compact add-on board with a brushed DC motor driver. This board features the TB67H480FNG, a dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. Fabricated with the BiCD process (DMOSFET is used for output power transistor), it covers a wide operating voltage range of 8.2V to 44V with a maximum output current capacity of 2A. It also offers many helpful features that support a robust and reliable operation, like the decay modes selection function, several protection features, and one anomaly detection indicator.

[Learn More]

Nano GPS 3 click

0

Nano GPS 3 Click is a compact add-on board that provides fast positioning capabilities. This board features the ORG1511, a GPS/GNSS module with an integrated antenna from OriginGPS. It is a miniature, multi-channel GPS, GLONASS, Galileo, SBAS, and QZSS overlay system receiver that continuously tracks all satellites in view, providing real-time positioning data in industry-standard NMEA format. The module introduces the industry’s lowest energy per fix ratio, unparalleled accuracy, and extremely fast fixes even under challenging.

[Learn More]

Force 3 click

0

Force 3 Click is a compact add-on board with circuitry for implementing Force Sensing Resistor into your projects whose resistance changes when a force, pressure, or mechanical stress is applied.

[Learn More]