TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137026 times)
  2. FAT32 Library (70152 times)
  3. Network Ethernet Library (56032 times)
  4. USB Device Library (46355 times)
  5. Network WiFi Library (41970 times)
  6. FT800 Library (41297 times)
  7. GSM click (29070 times)
  8. mikroSDK (26508 times)
  9. PID Library (26452 times)
  10. microSD click (25434 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Opto 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Optocoupler

Downloaded: 128 times

Not followed.

License: MIT license  

Opto 3 click is a relay Click board™, equipped with two pairs of optically isolated solid-state relays (SSR).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Opto 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Opto 3 click" changes.

Do you want to report abuse regarding "Opto 3 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Opto 3 click

Opto 3 click is a relay Click board™, equipped with two pairs of optically isolated solid-state relays (SSR).

opto3_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Opto3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Opto3 Click driver.

Standard key functions :

  • opto3_cfg_setup Config Object Initialization function.

    void opto3_cfg_setup ( opto3_cfg_t *cfg ); 
  • opto3_init Initialization function.

    err_t opto3_init ( opto3_t *ctx, opto3_cfg_t *cfg );

Example key functions :

  • opto3_get_in1 This function gets input 1 pin state.

    uint8_t opto3_get_in1 ( opto3_t *ctx );
  • opto3_get_in2 This function gets input 2 pin state.

    uint8_t opto3_get_in2 ( opto3_t *ctx );
  • opto3_set_out1 This function sets output 1 pin state.

    void opto3_set_out1 ( opto3_t *ctx, uint8_t state );

Examples Description

Opto 3 click to be used in applications that require reinforced galvanic isolation for both their input and output stages.

The demo application is composed of two sections :

Application Init

Initializes GPIO interface.

void application_init ( void )
{
    log_cfg_t log_cfg;
    opto3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    opto3_cfg_setup( &cfg );
    OPTO3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    opto3_init( &opto3, &cfg );

    log_info( &logger, " Application Task " );
}

Application Task

Reads the input pins state and sets their respective output pins to the same logic state. The output pins state will be displayed on the USB UART where you can track their changes.

void application_task ( void )
{
    static uint8_t out1_state = 0;
    static uint8_t out2_state = 0;
    uint8_t in1_state = 0;
    uint8_t in2_state = 0;

    in1_state = opto3_get_in1( &opto3 );
    in2_state = opto3_get_in2( &opto3 );

    if ( in1_state != out1_state )
    {
        out1_state = in1_state;
        opto3_set_out1( &opto3, out1_state );
        log_printf( &logger, " OUT1 state: %u\r\n", ( uint16_t ) out1_state );
    }

    if ( in2_state != out2_state )
    {
        out2_state = in2_state;
        opto3_set_out2( &opto3, out2_state );
        log_printf( &logger, " OUT2 state: %u\r\n", ( uint16_t ) out2_state );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Opto3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

IrDA 3 click

0

IrDA 3 click is an intelligent IR transceiver device that can both send and receive UART commands via the IR interface. IrDA 3 click features both the IR transceiver and the encoder/decoder IC, used to convert the UART data and send or receive it in IrDA® compatible format. IrDA 3 click also has an onboard clock generator for the fastest possible UART performance of 115,200 bps, so it does not need an additional clock signal to be generated by the MCU.

[Learn More]

EEPROM click

0

EEPROM Click is an accessory board in mikroBUS form factor. It features 24C08WP - a highly reliable, high performance CMOS technology serial 8K EEPROM in DIP packaging.

[Learn More]

LTE IoT 3 Click

5

LTE IoT 3 Click is a compact add-on board that contains a Low Power Wide Area (LPWA) Wireless IoT module that allows connections to the LTE, NB-IoT, and 2G networks. This board features the EXS82-W, LTE-IoT Wireless Module from Thales that offers a rich set of Internet protocols and industry-standard interfaces such as UART, USB, etc.

[Learn More]