TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136798 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55951 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41187 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26375 times)
  10. microSD click (25382 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LDC 1000 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Inductance

Downloaded: 122 times

Not followed.

License: MIT license  

LDC1000 click carries the world's first inductance-to-digital converter IC, along with a detachable sensor (an LC tank comprising a 36-turn PCB coil and a 100pF 1% NPO capacitor). The LDC1000 IC has a sub-micron resolution in short range applications; the board is ideal for highly precise short range measurements of the position, motion or composition of conductive targets.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LDC 1000 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LDC 1000 click" changes.

Do you want to report abuse regarding "LDC 1000 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LDC 1000 click

LDC1000 click carries the world's first inductance-to-digital converter IC, along with a detachable sensor (an LC tank comprising a 36-turn PCB coil and a 100pF 1% NPO capacitor). The LDC1000 IC has a sub-micron resolution in short range applications; the board is ideal for highly precise short range measurements of the position, motion or composition of conductive targets.

ldc1000_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Ldc1000 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ldc1000 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ldc1000_cfg_setup ( ldc1000_cfg_t *cfg );

  • Initialization function.

    LDC1000_RETVAL ldc1000_init ( ldc1000_t ctx, ldc1000_cfg_t cfg );

  • Click Default Configuration function.

    void ldc1000_default_cfg ( ldc1000_t *ctx );

Example key functions :

  • This function reads the proximity data.

    uint16_t ldc1000_get_proximity_data ( ldc1000_t *ctx );

  • This function reads the inductance data.

    float ldc1000_get_inductance_data ( ldc1000_t *ctx );

  • This function reads the input voltage from the INT pin.

    uint8_t ldc1000_get_int_input ( ldc1000_t *ctx );

Examples Description

This example showcases how to initialize and configure the logger and click modules and read and display proximity and impendance data.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and click modules. Configuration data is written to the: rp maximum/minimum, sensor frequency, LDC/Clock/Power registers.


void application_init ( )
{
    log_cfg_t log_cfg;
    ldc1000_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ldc1000_cfg_setup( &cfg );
    LDC1000_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ldc1000_init( &ldc1000, &cfg );
    Delay_100ms( );
    ldc1000_default_cfg( &ldc1000 );
    Delay_100ms( );
}

Application Task

This function reads and displays proximity and impendance data every 10th of a second.


void application_task ( )
{
    uint16_t proximity;
    uint16_t inductance;

    proximity = ldc1000_get_proximity_data( &ldc1000 );
    inductance = ldc1000_get_inductance_data( &ldc1000 );

    if ( ( ( proximity - old_proximity ) > LDC1000_SENSITIVITY ) &&
         ( ( old_proximity - proximity ) > LDC1000_SENSITIVITY ) )
    {
        log_printf( &logger, " * Proximity: %d \r\n", proximity );

        log_printf( &logger, " * Impendance: %f uH\r\n", inductance );

        old_proximity = proximity;

        log_printf( &logger, "--------------------\r\n" );
        Delay_100ms();
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ldc1000

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

FreeRTOS V9.0.0 MikroC Examples

15

These examples demonstrate the usage of FreeRTOS V9.0.0 in MikroC PRO for ARM, MikroC PRO for dsPIC and MikroC PRO for PIC32.

[Learn More]

6DOF IMU 5 click

0

6DOF IMU 5 Click features 7-Axis ICM-20789 chip from TDK, an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor.

[Learn More]

UART MUX 2 click

0

UART MUX 2 Click is a compact add-on board that enables pseudo-multidrop RS232 transmission. This board features the MAX399, a precise CMOS analog multiplexer that allows four remote RS-232 transceivers to share a single UART from Maxim Integrated. It offers fast switching speeds with a transition time of less than 250ns and low on-resistance less than 100Ω while retains CMOS-logic input compatibility and fast switching. Channel selection is performed through a set of specific GPIO pins and possesses additional functionality such as the manual ON/OFF feature. This Click board™ is suitable for a wide range of applications, from industrial and instrumentation to a consumer, communications, data-acquisition systems, and many more.

[Learn More]