TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137093 times)
  2. FAT32 Library (70234 times)
  3. Network Ethernet Library (56120 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42056 times)
  6. FT800 Library (41384 times)
  7. GSM click (29111 times)
  8. mikroSDK (26560 times)
  9. PID Library (26489 times)
  10. microSD click (25486 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 104 times

Not followed.

License: MIT license  

Accel 3 Click represent 3-axis linear accelerometer.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 3 click" changes.

Do you want to report abuse regarding "Accel 3 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Accel3 click

Accel 3 Click represent 3-axis linear accelerometer.

accel3_click.png

click Product page


Click library

  • Author : Mihajlo Djordjevic
  • Date : Dec 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the Accel3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void accel3_cfg_setup ( accel3_cfg_t *cfg );

  • Initialization function.

    ACCEL3_RETVAL accel3_init ( accel3_t ctx, accel3_cfg_t cfg );

  • Click Default Configuration function.

    void accel3_default_cfg ( accel3_t *ctx );

Example key functions :

  • This function select communication mode and executes start initialization.

    void accel3_default_cfg ( accel3_t ctx, accel3_cfg_t cfg );

  • This function reads Accel data ( X, Y and Z axis ) from the desired Accel registers of the H3LIS331DL module.

    void accel3_read_data ( accel3_t ctx, accel3_data_t accel3_data );

Examples Description

This is an example which demonstrates the usage of Accel 3 Click board.

The demo application is composed of two sections :

Application Init

Application Init performs Logger and Click initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    accel3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "--------------------------\r\n\n" );
    log_printf( &logger, "     Application  Init\r\n" );
    Delay_ms ( 100 );

    //  Click initialization.

    accel3_cfg_setup( &cfg );
    ACCEL3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel3_init( &accel3, &cfg );

    log_printf( &logger, "--------------------------\r\n\n" );
    log_printf( &logger, " -----  Accel 3 Click  -----\r\n" );
    log_printf( &logger, "--------------------------\r\n\n" );
    Delay_ms ( 1000 );

    accel3_default_cfg ( &accel3, &cfg );
    Delay_ms ( 100 );

    log_printf( &logger, " -- Initialization  done. --\r\n" );
    log_printf( &logger, "--------------------------\r\n\n" );
    Delay_ms ( 1000 );
}

Application Task

Measured coordinates (X,Y,Z) are being sent to the UART where you can track their changes. All data logs on USB UART for every 1 sec.


void application_task ( void )
{
    accel3_read_data( &accel3, &accel3_data );
    Delay_ms ( 100 );

    log_printf( &logger, "        Accelerometer       \r\n" );
    log_printf( &logger, "----------------------------\r\n" );
    log_printf( &logger, "        X = %d \r\n", accel3_data.x );
    log_printf( &logger, "        Y = %d \r\n", accel3_data.y );
    log_printf( &logger, "        Z = %d \r\n", accel3_data.z );
    log_printf( &logger, "----------------------------\r\n" );

    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

SPI Isolator 4 click

0

SPI Isolator 4 Click is a compact add-on board that contains a digital isolator optimized for a serial peripheral interface. This board features the ADuM341E, a quad-channel 5kVRMS digital isolator from Analog Devices. This board features the ADuM341E, a quad-channel 5kVRMS digital isolator from Analog Devices. This isolation component provides outstanding performance by combining high speed, complementary metal-oxide-semiconductor (CMOS), and monolithic air core transformer technology. Its data channels are independent and available in various configurations with a withstand voltage rating of 5kVrms, and operate with the external supply voltage ranging from 2.25V to 5.5V, providing compatibility with lower voltage systems enabling voltage translation functionality across the isolation barrier.

[Learn More]

M-Bus Slave click

0

M-Bus Slave Click is a Click board™ equipped with the TSS721A, a single chip transceiver developed by Texas Instruments for Meter-Bus applications according to EN1434-3 standard. The connection to the bus is polarity independent and serves as a slave node in the system. M-Bus Slave Click has full galvanic isolation with optocouplers to improve the reliability of the whole circuit.

[Learn More]

FTDI click - Example

0

This is demonstration project how FTDI click can be used to control slave microcontroller via I2C. Lower nibble of slave address is masked which enables the master to address slave using eight different addresses. Currently four addresses are implemented for different functionality.

[Learn More]