TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137078 times)
  2. FAT32 Library (70222 times)
  3. Network Ethernet Library (56094 times)
  4. USB Device Library (46409 times)
  5. Network WiFi Library (42028 times)
  6. FT800 Library (41373 times)
  7. GSM click (29109 times)
  8. mikroSDK (26553 times)
  9. PID Library (26487 times)
  10. microSD click (25483 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Barometer 9 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 25 times

Not followed.

License: MIT license  

Barometer 9 Click is a compact add-on board ideal for precision activity tracking and indoor navigation/localization. This board features the ENS220, a barometric pressure and temperature sensor from ScioSense

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Barometer 9 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Barometer 9 click" changes.

Do you want to report abuse regarding "Barometer 9 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Barometer 9 click

Barometer 9 Click is a compact add-on board ideal for precision activity tracking and indoor navigation/localization. This board features the ENS220, a barometric pressure and temperature sensor from ScioSense

barometer9_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Nov 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Barometer 9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Barometer 9 Click driver.

Standard key functions :

  • barometer9_cfg_setup Config Object Initialization function.

    void barometer9_cfg_setup ( barometer9_cfg_t *cfg );
  • barometer9_init Initialization function.

    err_t barometer9_init ( barometer9_t *ctx, barometer9_cfg_t *cfg );
  • barometer9_default_cfg Click Default Configuration function.

    err_t barometer9_default_cfg ( barometer9_t *ctx );

Example key functions :

  • barometer9_read_part_id This function is used to read a Device ID of Barometer 9 click board.

    err_t barometer9_read_part_id ( barometer9_t *ctx, uint16_t *part_id );
  • barometer9_get_temperature This function is used to read a temperature of Barometer 9 click board in degree of Celsius.

    err_t barometer9_get_temperature ( barometer9_t *ctx, float *temperature );
  • barometer9_get_pressure This function is used to read a pressure of Barometer 9 click board in Pascals.

    err_t barometer9_get_pressure ( barometer9_t *ctx, float *pressure );

Example Description

This example demonstrates the use of Barometer 9 Click board by reading and displaying the pressure and temperature measurements.

The demo application is composed of two sections :

Application Init

The initialization of I2C or SPI module and log UART. After driver initialization, the app sets the default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    barometer9_cfg_t barometer9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    barometer9_cfg_setup( &barometer9_cfg );
    BAROMETER9_MAP_MIKROBUS( barometer9_cfg, MIKROBUS_1 );
    err_t init_flag = barometer9_init( &barometer9, &barometer9_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    if ( BAROMETER9_ERROR == barometer9_default_cfg ( &barometer9 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    uint16_t device_id = 0;
    barometer9_read_part_id ( &barometer9, &device_id );
    if ( BAROMETER9_DEVICE_ID != device_id )
    {
        log_error( &logger, " Read error " );
        for ( ; ; );
    }
    else
    {
        log_printf( &logger, " Device ID: 0x%.4X \r\n", device_id );
    }

    log_info( &logger, " Application Task " );
}

Application Task

The demo application reads and displays the Pressure [Pa] and Temperature [degree Celsius] data. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    float temperature = 0;
    float pressure = 0;

    barometer9_get_temperature( &barometer9, &temperature );
    barometer9_get_pressure( &barometer9, &pressure );
    log_printf( &logger, " Temperature: %.2f C \r\n Pressure %.3f Pa \r\n", temperature, pressure );
    log_printf( &logger, " - - - - - - - - - - \r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Barometer9

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

6DOF IMU 15 Click

5

6DOF IMU 15 Click is a compact add-on board that contains a 6-axis MEMS motion tracking device combining a 3-axis gyroscope and a 3-axis accelerometer. This board features the ASM330LHH, automotive 6-axis MEMS motion tracking device, from STMicroelectronics.

[Learn More]

Air Motion click

0

Air Motion Click is a compact add-on board that contains a 6-axis inertial measurement unit. This board features TDK InvenSense’s ICM-40627, a 6-axis MEMS MotionTracking™ device that combines a 3-axis user-selectable gyroscope accelerometer.

[Learn More]

BUCK click

0

BUCK click is a buck switching regulator that accepts a wide input voltage range of up to 40V and steps it down to 3.3V or 5V.

[Learn More]