TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137093 times)
  2. FAT32 Library (70234 times)
  3. Network Ethernet Library (56120 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42053 times)
  6. FT800 Library (41384 times)
  7. GSM click (29111 times)
  8. mikroSDK (26560 times)
  9. PID Library (26489 times)
  10. microSD click (25486 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Barometer 13 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 31 times

Not followed.

License: MIT license  

Barometer 13 Click is a compact add-on board that measures air pressure in a specific environment. This board features the BMP585, a barometric pressure sensor from Bosch Sensortec. It has a nominal operating pressure range of 30 up to 125kPa and a temperature operating range from -40 to +85°C. The sensor provides true absolute pressure and temperature readings due to on-chip linearization and temperature compensation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Barometer 13 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Barometer 13 click" changes.

Do you want to report abuse regarding "Barometer 13 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Barometer 13 click

Barometer 13 Click is a compact add-on board that measures air pressure in a specific environment. This board features the BMP585, a barometric pressure sensor from Bosch Sensortec. It has a nominal operating pressure range of 30 up to 125kPa and a temperature operating range from -40 to +85°C. The sensor provides true absolute pressure and temperature readings due to on-chip linearization and temperature compensation.

barometer13_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Sep 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Barometer 13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Barometer 13 Click driver.

Standard key functions :

  • barometer13_cfg_setup Config Object Initialization function.

    void barometer13_cfg_setup ( barometer13_cfg_t *cfg );
  • barometer13_init Initialization function.

    err_t barometer13_init ( barometer13_t *ctx, barometer13_cfg_t *cfg );
  • barometer13_default_cfg Click Default Configuration function.

    err_t barometer13_default_cfg ( barometer13_t *ctx );

Example key functions :

  • barometer13_get_measurement Barometer 13 get the measurement data function.

    err_t barometer13_get_measurement ( barometer13_t *ctx, float *pressure, float *temperature );
  • barometer13_set_odr Barometer 13 set the output data rate function.

    err_t barometer13_set_odr ( barometer13_t *ctx, uint8_t odr );
  • barometer13_set_int_cfg Barometer 13 set the interrupt config function.

    err_t barometer13_set_int_cfg ( barometer13_t *ctx, uint8_t int_en, uint8_t int_od, 
                                                      uint8_t int_pol, uint8_t int_mode );

Example Description

This example demonstrates the use of Barometer 13 Click board™ by reading and displaying the pressure and temperature measurements.

The demo application is composed of two sections :

Application Init

The initialization of I2C or SPI module and log UART. After driver initialization, the app sets the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    barometer13_cfg_t barometer13_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    barometer13_cfg_setup( &barometer13_cfg );
    BAROMETER13_MAP_MIKROBUS( barometer13_cfg, MIKROBUS_1 );
    err_t init_flag = barometer13_init( &barometer13, &barometer13_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BAROMETER13_ERROR == barometer13_default_cfg ( &barometer13 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, " ______________________ \r\n" );
}

Application Task

The demo application reads and displays the Pressure [mBar] and Temperature [degree Celsius] data. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{   
    float pressure = 0, temperature = 0;
    if ( ( BAROMETER13_OK == barometer13_get_measurement( &barometer13, &pressure, &temperature ) ) &&
         barometer13_get_interrupt( &barometer13 ) )
    {
        log_printf( &logger, " Pressure    : %.2f mBar \r\n", pressure );
        log_printf( &logger, " Temperature : %.2f degC \r\n", temperature );
        log_printf( &logger, " ______________________ \r\n" );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Barometer13

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

6DOF IMU 5 Click

5

6DOF IMU 5 Click features 7-Axis ICM-20789 chip, an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor.

[Learn More]

StereoAmp click

0

This is an example which demonstrates the use of StereoAmp Click board - stereo amplifier and is ideal for battery operated devices or as a lab amplifier.

[Learn More]

CO2 3 click

0

CO2 3 Click is a compact add-on board that allows for precise and reliable indoor air quality measurements. This board features XENSIV™ PASCO2V01BUMA1, a highly accurate CO2 sensor module from Infineon Technologies that uses photoacoustic spectroscopy technology to measure indoor air quality. The module comprises a gas measuring cell, an IR emitter, a microphone, and a microcontroller for data processing. Its key components are developed in-house, ensuring the highest quality and performance. Other major characteristics include high accuracy, low power consumption, and versatile configuration options.

[Learn More]