TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137100 times)
  2. FAT32 Library (70236 times)
  3. Network Ethernet Library (56125 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42077 times)
  6. FT800 Library (41388 times)
  7. GSM click (29116 times)
  8. mikroSDK (26562 times)
  9. PID Library (26491 times)
  10. microSD click (25487 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Rotary W 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: Rotary encoder

Downloaded: 37 times

Not followed.

License: MIT license  

Rotary W 2 Click is a compact add-on board that allows you to add a precision input knob to your design. This board features the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. It also features an LED ring composed of 16 individual white LEDs that can be used to represent the encoder position more visually.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Rotary W 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Rotary W 2 click" changes.

Do you want to report abuse regarding "Rotary W 2 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Rotary W 2 click

Rotary W 2 Click is a compact add-on board that allows you to add a precision input knob to your design. This board features the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. It also features an LED ring composed of 16 individual white LEDs that can be used to represent the encoder position more visually.

rotaryw2_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Sep 2023.
  • Type : SPI type

Software Support

We provide a library for the Rotary W 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Rotary W 2 Click driver.

Standard key functions :

  • rotaryw2_cfg_setup Config Object Initialization function.

    void rotaryw2_cfg_setup ( rotaryw2_cfg_t *cfg );
  • rotaryw2_init Initialization function.

    err_t rotaryw2_init ( rotaryw2_t *ctx, rotaryw2_cfg_t *cfg );
  • rotaryw2_default_cfg Click Default Configuration function.

    err_t rotaryw2_default_cfg ( rotaryw2_t *ctx );

Example key functions :

  • rotaryw2_set_led_pos Rotary W 2 set LED position function.

    err_t rotaryw2_set_led_pos ( rotaryw2_t *ctx, uint8_t led_pos );
  • rotaryw2_set_led_data Rotary W 2 set LED data function.

    err_t rotaryw2_set_led_data ( rotaryw2_t *ctx, uint16_t data_in );
  • rotaryw2_get_state_switch Rotary W 2 get switch state function.

    uint8_t rotaryw2_get_state_switch ( rotaryw2_t *ctx );

Example Description

This library contains the API for the Rotary W 2 Click driver to control LEDs states and a rotary encoder position readings.

The demo application is composed of two sections :

Application Init

Initialization of SPI module and log UART. After the driver init, the app executes a default configuration and turn off all LEDs.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    rotaryw2_cfg_t rotaryw2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    rotaryw2_cfg_setup( &rotaryw2_cfg );
    ROTARYW2_MAP_MIKROBUS( rotaryw2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == rotaryw2_init( &rotaryw2, &rotaryw2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ROTARYW2_ERROR == rotaryw2_default_cfg ( &rotaryw2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the Rotary W 2 Click board™. The demo example shows the functionality of a rotary encoder used to control LEDs.

void application_task ( void )
{
    if ( ROTARYW2_OK == rotaryw2_set_led_data( &rotaryw2, led_data ) )
    {
        rotaryw2_switch_detection( );
        rotaryw2_encoder_mechanism( );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RotaryW2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Buck 10 click

0

Buck 10 Click is a high-efficiency step-down converter which provides a highly regulated output voltage derived from the connected power source, rated from 4V to 18V. The regulated output voltage can be selected between two values: 3.3V and 5V. These are voltage values ​​that are most commonly used in many embedded designs. This click is based around an integrated DC-DC converter, labeled as MPM3632C.

[Learn More]

RTC 5 click

1

RTC5 click carries MCP79510, a real-time clock/calendar with an SPI interface (mikroBUS MISO, MOSI, SCK and CS pins); along with a programmable interrupt for system output.

[Learn More]

EEPROM 2 click

0

EEPROM2 click provides 2 Mbit (2,097,152 bits) of Electrically Erasable and Programmable Read Only Memory, organized in bytes. In other words, this Click board™ is an EEPROM memory medium with the capacity of 256 KB. The used EEPROM module has an impressive endurance of 4,000,000 write cycles and data retention period of over 200 years.

[Learn More]