TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137089 times)
  2. FAT32 Library (70232 times)
  3. Network Ethernet Library (56105 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42053 times)
  6. FT800 Library (41384 times)
  7. GSM click (29111 times)
  8. mikroSDK (26560 times)
  9. PID Library (26489 times)
  10. microSD click (25486 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Ring 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: LED matrix

Downloaded: 45 times

Not followed.

License: MIT license  

LED Ring 2 Click is a compact add-on board that provides a circular-shaped electronic lighting solution. This board features three I2C-configurable high-performance LED matrix drivers, the LP5862 from Texas Instruments. The LP5862 integrates 18 constant current sinks for driving 18 yellow LEDs. With the help of two additional LP5862 drivers, it is possible to realize, as shown on this board, a solution of 54 yellow LEDs arranged in a circular pattern. In addition, it also provides excellent PWM dimming effects.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Ring 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Ring 2 click" changes.

Do you want to report abuse regarding "LED Ring 2 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LED Ring 2 click

LED Ring 2 Click is a compact add-on board that provides a circular-shaped electronic lighting solution. This board features three I2C-configurable high-performance LED matrix drivers, the LP5862 from Texas Instruments. The LP5862 integrates 18 constant current sinks for driving 18 yellow LEDs. With the help of two additional LP5862 drivers, it is possible to realize, as shown on this board, a solution of 54 yellow LEDs arranged in a circular pattern. In addition, it also provides excellent PWM dimming effects.

ledring2_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Mar 2023.
  • Type : I2C type

Software Support

We provide a library for the LED Ring 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LED Ring 2 Click driver.

Standard key functions :

  • ledring2_cfg_setup Config Object Initialization function.

    void ledring2_cfg_setup ( ledring2_cfg_t *cfg );
  • ledring2_init Initialization function.

    err_t ledring2_init ( ledring2_t *ctx, ledring2_cfg_t *cfg );
  • ledring2_default_cfg Click Default Configuration function.

    err_t ledring2_default_cfg ( ledring2_t *ctx );

Example key functions :

  • ledring2_set_led_brightness LED Ring 2 set LED brightness function.

    err_t ledring2_set_led_brightness ( ledring2_t *ctx, uint8_t led_pos, uint16_t led_brightness );
  • ledring2_set_led_pos_state LED Ring 2 set LED state function.

    err_t ledring2_set_led_pos_state ( ledring2_t *ctx, uint8_t led_pos, ledring2_led_state_t led_state );
  • ledring2_enable LED Ring 2 enable function.

    err_t ledring2_enable ( ledring2_t *ctx );

Example Description

This library contains API for LED Ring 2 Click driver. The library initializes and defines the I2C bus drivers to write and read data from registers. The library also includes a function for controlling LEDs.

The demo application is composed of two sections :

Application Init

The initialization of I2C module, log UART, and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ledring2_cfg_t ledring2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ledring2_cfg_setup( &ledring2_cfg );
    LEDRING2_MAP_MIKROBUS( ledring2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == ledring2_init( &ledring2, &ledring2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    if ( LEDRING2_ERROR == ledring2_default_cfg ( &ledring2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    Delay_ms ( 100 );
    log_info( &logger, " Application Task " );
    log_printf( &logger, " LED Ring 2 Click\r\n" );
}

Application Task

This example demonstrates the use of the LED Ring 2 Click board™. The demo example controls every LED and changes the LED brightness by PWM, increasing its brightness from LED1 to LED54.

void application_task ( void ) 
{
    for ( uint8_t led_pos = 1; led_pos < 55; led_pos++ )
    {
        if ( LEDRING2_OK == ledring2_set_led_brightness( &ledring2, led_pos, ( led_pos * 100 ) + 255 ) )
        {
            ledring2_set_vsync( &ledring2 );
            Delay_ms ( 10 );
        }
    }
    Delay_ms ( 1000 );

    for ( uint8_t led_pos = 54; led_pos > 0; led_pos-- )
    {
        if ( LEDRING2_OK == ledring2_set_led_brightness( &ledring2, led_pos, 0 ) )
        {
            ledring2_set_vsync( &ledring2 );
            Delay_ms ( 10 );
        }
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LEDRing2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

MICRF RX click

0

MICRF RX Click is a compact add-on board for high-sensitivity applications, including remote keyless entry, tire pressure monitoring systems, and remote actuation systems. This board features the MICRF220, an ASK/OOK 315MHz receiver with RSSI and squelch capabilities from Microchip to offer top-notch RF performance. This super-heterodyne, image-reject RF receiver provides a -110dBm sensitivity at 1kbps and a 0.1% Bit Error Rate (BER), supporting adjustable demodulator filter bandwidths for bit rates up to 14.4kbps.

[Learn More]

STSPIN220 click

5

STSPIN220 click is a stepper motor driver with the PWM current control and selectable microstepping up to 256 microsteps. It is based on the STSPIN220, a low voltage stepper motor driver from STSPIN2 series.

[Learn More]

Step Down 9 click

0

Step Down 9 Click is a compact add-on board that converts higher voltages into a lower voltage level. This board features the MAX20406, an automotive fully integrated synchronous silent switcher buck converter from Analog Devices.

[Learn More]