TOP Contributors

  1. MIKROE (2659 codes)
  2. Alcides Ramos (356 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137000 times)
  2. FAT32 Library (70118 times)
  3. Network Ethernet Library (56027 times)
  4. USB Device Library (46348 times)
  5. Network WiFi Library (41966 times)
  6. FT800 Library (41286 times)
  7. GSM click (29055 times)
  8. mikroSDK (26489 times)
  9. PID Library (26450 times)
  10. microSD click (25413 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DIGI POT 11 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Digital potentiometer

Downloaded: 52 times

Not followed.

License: MIT license  

DIGI POT 11 Click is a compact add-on board representing a digitally controlled potentiometer. This board features a double pack of the MAX5387, a dual, 256-tap, volatile, low-voltage linear taper digital potentiometer from Analog Devices. This way, four digitally I2C-controlled potentiometers are realized with end-to-end resistance values of 50kΩ. Operating from a single +3.3V power supply, this device provides a low 35ppm/ºC end-to-end temperature coefficient.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DIGI POT 11 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DIGI POT 11 click" changes.

Do you want to report abuse regarding "DIGI POT 11 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DIGI POT 11 click

DIGI POT 11 Click is a compact add-on board representing a digitally controlled potentiometer. This board features a double pack of the MAX5387, a dual, 256-tap, volatile, low-voltage linear taper digital potentiometer from Analog Devices. This way, four digitally I2C-controlled potentiometers are realized with end-to-end resistance values of 50kΩ. Operating from a single +3.3V power supply, this device provides a low 35ppm/ºC end-to-end temperature coefficient.

digipot11_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2022.
  • Type : I2C type

Software Support

We provide a library for the DIGI POT 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DIGI POT 11 Click driver.

Standard key functions :

  • digipot11_cfg_setup Config Object Initialization function.

    void digipot11_cfg_setup ( digipot11_cfg_t *cfg );
  • digipot11_init Initialization function.

    err_t digipot11_init ( digipot11_t *ctx, digipot11_cfg_t *cfg );

Example key functions :

  • digipot11_set_u1_wiper This function sets the position of the selected wiper of U1 device by using I2C serial interface.

    err_t digipot11_set_u1_wiper ( digipot11_t *ctx, uint8_t wiper_sel, uint8_t data_in );
  • digipot11_set_u2_wiper This function sets the position of the selected wiper of U2 device by using I2C serial interface.

    err_t digipot11_set_u2_wiper ( digipot11_t *ctx, uint8_t wiper_sel, uint8_t data_in );

Example Description

This example demonstrates the use of DIGI POT 11 click board by changing the wipers position of both U1 and U2 devices.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    digipot11_cfg_t digipot11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    digipot11_cfg_setup( &digipot11_cfg );
    DIGIPOT11_MAP_MIKROBUS( digipot11_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == digipot11_init( &digipot11, &digipot11_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Iterates through the entire wiper range and sets the wipers position of both U1 and U2 devices once per second. The current wiper position will be displayed on the USB UART.

void application_task ( void )
{
    for ( uint16_t wiper_pos = DIGIPOT11_WIPER_ZERO_SCALE; wiper_pos <= DIGIPOT11_WIPER_FULL_SCALE; wiper_pos += 5 )
    {
        if ( DIGIPOT11_OK == digipot11_set_u1_wiper ( &digipot11, DIGIPOT11_WIPER_SEL_BOTH, ( uint8_t ) wiper_pos ) )
        {
            log_printf( &logger, " U1 wipers position: %u\r\n", wiper_pos );
        }
        if ( DIGIPOT11_OK == digipot11_set_u2_wiper ( &digipot11, DIGIPOT11_WIPER_SEL_BOTH, 
                                                      ( uint8_t ) ( DIGIPOT11_WIPER_FULL_SCALE - wiper_pos ) ) )
        {
            log_printf( &logger, " U2 wipers position: %u\r\n\n", ( DIGIPOT11_WIPER_FULL_SCALE - wiper_pos ) );
        }
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DIGIPOT11

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Cap Extend Click

1

Click – board with SX8633 low power capacitive touch button controller | MikroElektronika Cap Extend click carries a SEMTECH SX8633 low power, capacitive button touch controller. It has 12 pins for connecting capacitive inputs (either touch-buttons or proximity sensors). Any sort of conductive object can be used as an input.

[Learn More]

UVA click

0

UVA Click is a compact add-on board used to detect solar UV index. This board features the GUVA-C32SM, an ultraviolet light sensor capable of measuring UV index between 0 to 14 from Genicom Co., Ltd. It contains the GaN-based chip die, amplifiers, ADC, digital control logic, and I2C interface circuit to measure UVA volumes, working in the spectral range of 220-370nm. The GUVA-C32M can acquire the intensity of UVA, respectively, and outputs digital count according to each intensity.

[Learn More]

Slider 2 click

0

The Slider 2 click is a very accurate potentiometer Click Board, featuring a high-quality mechanical slide-action potentiometer (slider), which in conjunction with the accurate voltage reference IC, provides very precise analog control voltage (CV) at its output. Featuring an accurate voltage reference IC, the output of the Click board™ can be directly sampled by the A/D peripheral of the microcontroller (MCU). Since there are many different MCU architectures with different reference voltage requirements, Slider 2 click offers a possibility to select the voltage reference between 4.096V and 2.048V, two most commonly used values for different MCU peripherals.

[Learn More]