TOP Contributors

  1. MIKROE (2658 codes)
  2. Alcides Ramos (355 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136929 times)
  2. FAT32 Library (70051 times)
  3. Network Ethernet Library (56012 times)
  4. USB Device Library (46313 times)
  5. Network WiFi Library (41935 times)
  6. FT800 Library (41244 times)
  7. GSM click (29032 times)
  8. PID Library (26435 times)
  9. mikroSDK (26423 times)
  10. microSD click (25390 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Excelon-Ultra click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: FRAM

Downloaded: 51 times

Not followed.

License: MIT license  

Excelon-Ultra Click is a compact add-on board that contains the most reliable nonvolatile memory. This board features the CY15B116QSN, a high-performance 16-Mbit nonvolatile memory that employs an advanced ferroelectric process from Infineon Technologies.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Excelon-Ultra click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Excelon-Ultra click" changes.

Do you want to report abuse regarding "Excelon-Ultra click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Excelon-Ultra click

Excelon-Ultra Click is a compact add-on board that contains the most reliable nonvolatile memory. This board features the CY15B116QSN, a high-performance 16-Mbit nonvolatile memory that employs an advanced ferroelectric process from Infineon Technologies.

excelonultra_click.png

click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jun 2021.
  • Type : SPI type

Software Support

We provide a library for the ExcelonUltra Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for ExcelonUltra Click driver.

Standard key functions :

  • excelonultra_cfg_setup Config Object Initialization function.

    void excelonultra_cfg_setup ( excelonultra_cfg_t *cfg );
  • excelonultra_init Initialization function.

    err_t excelonultra_init ( excelonultra_t *ctx, excelonultra_cfg_t *cfg );
  • excelonultra_default_cfg Click Default Configuration function.

    err_t excelonultra_default_cfg ( excelonultra_t *ctx );

Example key functions :

  • excelonultra_write_data_to_memory Write data starting from specified memory address.

    err_t excelonultra_write_data_to_memory 
    ( excelonultra_t *ctx, uint32_t mem_adr, uint8_t *mem_data, uint32_t mem_data_len );
  • excelonultra_read_data_from_memory Read data starting from specified memory address.

    err_t excelonultra_read_data_from_memory 
    ( excelonultra_t *ctx, uint32_t mem_adr, uint8_t *mem_data, uint32_t mem_data_len );
  • excelonultra_clear_data_from_memory Clears data starting from specified memory address.

    err_t excelonultra_clear_data_from_memory 
    ( excelonultra_t *ctx, uint32_t mem_adr, uint32_t mem_data_len );

Example Description

This example is showcase of device and it's library abillity. In this example is shown device ID, ability to manipulate with memory. After default configuration device IDs are logged. After that application Writes data to memory, reads data from memory, clears data from memory and checks if data is cleard by reading that same memory address.

The demo application is composed of two sections :

Application Init

Initializes MCU modules for communication used in this application (UART, SPI). Calls default configuration that resets device, reads IDs, and enables writing to memory and sets all RAM memory to be free for conrol.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    excelonultra_cfg_t excelonultra_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    excelonultra_cfg_setup( &excelonultra_cfg );
    EXCELONULTRA_MAP_MIKROBUS( excelonultra_cfg, MIKROBUS_1 );
    err_t init_flag  = excelonultra_init( &excelonultra, &excelonultra_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    excelonultra_default_cfg ( &excelonultra );

    log_printf( &logger, " > Manufacturer ID: 0x%.4X\r\n", excelonultra.manufacturer_id );
    log_printf( &logger, " > Product ID: 0x%.4X\r\n", excelonultra.product_id );
    log_printf( &logger, " > Density ID: 0x%.2X\r\n", excelonultra.density_id );
    log_printf( &logger, " > Die Rev: 0x%.2X\r\n", excelonultra.die_rev );

    log_printf( &logger, " > Unique ID: 0x%.2X%.2X%.2X%.2X%.2X%.2X%.2X%.2X\r\n"
    , excelonultra.unique_id[ 7 ], excelonultra.unique_id[ 6 ], excelonultra.unique_id[ 5 ],
    excelonultra.unique_id[ 4 ], excelonultra.unique_id[ 3 ], excelonultra.unique_id[ 2 ],
    excelonultra.unique_id[ 1 ], excelonultra.unique_id[ 0 ] );

    Delay_ms ( 1000 );
    log_info( &logger, " Application Task " );
}

Application Task

Write data to memory, read data from memory. After that clears that memory address, and checks if it's cleared by reading data. On every iteration of the fucntion writing data is changed between "MikroE" and "Excelon-Ultra Click"


void application_task ( void ) 
{
    static uint32_t memory_address = 0x00000055;
    static uint8_t data_selection = 1;
    static uint8_t write_len;
    char to_write[ 50 ] = { 0 };
    char read_from[ 50 ] = { 0 };

    if (data_selection)
    {
        strcpy( to_write, MIKROE_DATA );
        data_selection = !data_selection;
    }
    else
    {
        strcpy( to_write, CLICK_DATA );
        data_selection = !data_selection;
    }
    write_len = strlen( to_write );

    log_printf( &logger, " > Writing data to memory: %s\r\n", to_write );
    excelonultra_write_data_to_memory( &excelonultra, memory_address, to_write, write_len );

    Delay_ms ( 500 );

    excelonultra_read_data_from_memory( &excelonultra, memory_address, read_from, write_len );
    log_printf( &logger, " > Read data from memory: %s\r\n", read_from );

    Delay_ms ( 500 );

    log_printf( &logger, " > Clearing data from memory\r\n" );
    excelonultra_clear_data_from_memory( &excelonultra, memory_address, write_len );

    Delay_ms ( 500 );

    excelonultra_read_data_from_memory( &excelonultra, memory_address, read_from, write_len );
    log_printf( &logger, " > Read data from memory: %s\r\n", read_from );

    log_printf( &logger, "***********************************\r\n" );
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ExcelonUltra

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

OOK TX click

0

OOK TX click is a simple wireless transmitter that operates at the frequency of 433MHz (sub-GHz). This device allows realization of a simple, low-speed wireless ad-hoc communication network between a transmitter and compatible receiver, such as the OOK RX click.

[Learn More]

ECG 7 click

0

ECG 7 Click is a compact add-on board that records the heart's electrical activity. This board features the MCP6N16, a single zero-drift instrumentation amplifier with selectable gain from Microchip. In addition to the jack connector provided for connecting the cable with ECG electrodes, this Click boardâ„¢ offers the possibility of connecting electrodes through screw terminals or an onboard header if the electrode connection does not match the jack connector. Besides, the user is allowed to process the output signal in analog or digital form.

[Learn More]

H-Bridge 5

5

The H-Bridge 5 Click is designed for control DC motors and inductiv loads. This Click board contains the MP6515GF-Z, a H-bridge motor driver from MPS, It features an Full H-Bridge driver with Internal safety features include over-current protection, input over-voltage protection, under voltage lockout (UVLO), and thermal shutdown.

[Learn More]