TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137108 times)
  2. FAT32 Library (70237 times)
  3. Network Ethernet Library (56126 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42079 times)
  6. FT800 Library (41390 times)
  7. GSM click (29118 times)
  8. mikroSDK (26564 times)
  9. PID Library (26503 times)
  10. microSD click (25487 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS 5 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.23

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 121 times

Not followed.

License: MIT license  

Determine your current position with GNSS 5 click. It carries the NEO-M8N GNSS receiver module from u-blox.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS 5 click" changes.

Do you want to report abuse regarding "GNSS 5 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GNSS 5 click

Determine your current position with GNSS 5 click. It carries the NEO-M8N GNSS receiver module from u-blox.

gnss5_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2022.
  • Type : UART type

Software Support

We provide a library for the GNSS 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GNSS 5 Click driver.

Standard key functions :

  • gnss5_cfg_setup Config Object Initialization function.

    void gnss5_cfg_setup ( gnss5_cfg_t *cfg );
  • gnss5_init Initialization function.

    err_t gnss5_init ( gnss5_t *ctx, gnss5_cfg_t *cfg );

Example key functions :

  • gnss5_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t gnss5_generic_read ( gnss5_t *ctx, char *data_out, uint16_t len );
  • gnss5_clear_ring_buffers This function clears UART tx and rx ring buffers.

    void gnss5_clear_ring_buffers ( gnss5_t *ctx );
  • gnss5_parse_gngga This function parses the GNGGA data from the read response buffer.

    err_t gnss5_parse_gngga ( char *rsp_buf, uint8_t gngga_element, char *element_data );

Example Description

This example demonstrates the use of GNSS 5 click by reading and displaying the GPS coordinates.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gnss5_cfg_t gnss5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gnss5_cfg_setup( &gnss5_cfg );
    GNSS5_MAP_MIKROBUS( gnss5_cfg, MIKROBUS_1 );
    if ( UART_ERROR == gnss5_init( &gnss5, &gnss5_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the received data, parses the GNGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.

void application_task ( void )
{
    if ( GNSS5_OK == gnss5_process( &gnss5 ) )
    {
        if ( PROCESS_BUFFER_SIZE == app_buf_len )
        {
            gnss5_parser_application( &gnss5, app_buf );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GNSS5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

EnOcean 4 click

0

EnOcean 4 Click carries a ultra-low power TCM515U transceiver gateway module which operates at 902MHz radio band, perfectly suited for the realization of transceiver gateways, actuators and controllers for systems communicating based on the EnOcean radio standard.

[Learn More]

Expand 12 click

0

Expand 12 Click is a compact add-on board that contains a multi-port I/O expander. This board features the MAX7300, a general-purpose I/O expander providing remote I/O expansion for most MCU’s families from Maxim Integrated, now part of Analog Devices. The MAX7300 comes in a 28-port configuration and allows easy addition of I/O through a standard I2C serial interface. Each port is user-configurable to either a logic input or logic output, capable of sinking 10mA and sourcing 4.5mA.

[Learn More]

ADC 16 click

0

ADC 16 Click is a compact add-on board that contains a high-performance data converter. This board features the ADS7142-Q1, a low-power two-channel 12-bit analog-to-digital converter from Texas Instruments. This I2C configurable 140kSPS successive approximation register (SAR) analog-to-digital converter (ADC) can autonomously monitor signals while maximizing system power, reliability, and performance. It implements event-triggered interrupts per channel using a digital window comparator with programmable high and low thresholds, hysteresis, and event counter.

[Learn More]