TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137036 times)
  2. FAT32 Library (70167 times)
  3. Network Ethernet Library (56037 times)
  4. USB Device Library (46361 times)
  5. Network WiFi Library (41978 times)
  6. FT800 Library (41307 times)
  7. GSM click (29079 times)
  8. mikroSDK (26519 times)
  9. PID Library (26453 times)
  10. microSD click (25449 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Analog Key click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Pushbutton/Switches

Downloaded: 112 times

Not followed.

License: MIT license  

Analog Key Click is an analog keyboard on a Click board. It contains six tactile pushbuttons, used to select one of six different voltage levels. The idea behind this click is very simple: six resistors form a voltage divider.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Analog Key click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Analog Key click" changes.

Do you want to report abuse regarding "Analog Key click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Analog Key click

Analog Key Click is an analog keyboard on a Click board�. It contains six tactile pushbuttons, used to select one of six different voltage levels.

analogkey_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : ADC type

Software Support

We provide a library for the AnalogKey Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for AnalogKey Click driver.

Standard key functions :

  • Config Object Initialization function.

    void analogkey_cfg_setup ( analogkey_cfg_t *cfg );

  • Initialization function.

    ANALOGKEY_RETVAL analogkey_init ( analogkey_t ctx, analogkey_cfg_t cfg );

Example key functions :

  • This function returns which button is pressed.

    uint8_t analogkey_get_key ( analogkey_t* ctx, uint16_t adc_value );

  • This function sets the resolution.

    void analogkey_set_resolution ( analogkey_t* ctx, uint8_t resolution );

Examples Description

This example logs which button is pressed.

The demo application is composed of two sections :

Application Init

Initializes driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    analogkey_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    analogkey_cfg_setup( &cfg );
    ANALOGKEY_MAP_MIKROBUS( cfg, MIKROBUS_1 );

    analogkey_set_resolution( &analogkey, ANALOGKEY_ADC_RESOLUTION_12bit );

    analogkey_init( &analogkey, &cfg );
    Delay_ms ( 100 );

    log_printf(&logger, " Press the button :D\r\n ");

}

Application Task

Reads ADC value and detects which button is pressed based on that value.


void application_task ( void )
{
    float an_voltage = 0;
    analogkey_key_id_t key;
    float an_average = 0;

    an_voltage = analogkey_read_voltage( &analogkey );

    if ( an_voltage > 0.2 )
    {
        an_average += an_voltage / ANALOGKEY_N_SAMPLES;
        for ( uint8_t cnt = 0; cnt < ANALOGKEY_N_SAMPLES - 1; cnt++ )
        {
            an_voltage = analogkey_read_voltage( &analogkey );

            an_average += an_voltage / ANALOGKEY_N_SAMPLES;
        }
    }

    if ( ( key = analogkey_get_key( &analogkey, an_average ) ) != ANALOGKEY_TOUCH_KEY_NONE )
    {
        log_printf( &logger, " T%u is pressed.\r\n", (uint16_t)key );

        while ( analogkey_read_voltage( &analogkey ) > 0.2 ) {
             Delay_ms ( 1 );   
        }

        log_printf( &logger, " T%u is released.\r\n", (uint16_t)key );
        Delay_ms ( 10 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AnalogKey

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Charger 3 click

0

Charger 3 Click is a compact add-on board that represents a standalone battery charger with thermal regulation. This board features the TP4056, a complete constant-current/constant-voltage linear charger for single-cell lithium-ion batteries from NanJing Top Power ASIC Corp.

[Learn More]

Accel 12 click

0

Accel 12 click is an advanced 3-axis motion tracking Click board™, which utilizes the MC3216, a low-noise, and low power 3-axis accelerometer.

[Learn More]

ECG 5 click

0

ECG 5 click can be used for the development of ECG and Heart-Rate (HR) applications. The Click board™ features the AD8232, an integrated bio-signal front end. This IC has many features necessary for providing accurate ECG measurements, including very high common-mode rejection ratio, high gain with DC blocking capability, adjustable high-pass and low-pass filters, integrated right leg drive (RLD), etc.

[Learn More]