TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136745 times)
  2. FAT32 Library (69952 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46267 times)
  5. Network WiFi Library (41887 times)
  6. FT800 Library (41173 times)
  7. GSM click (28985 times)
  8. PID Library (26414 times)
  9. mikroSDK (26362 times)
  10. microSD click (25376 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck 5 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 105 times

Not followed.

License: MIT license  

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 click accepts a wide voltage range on its input - from 5V to 30V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck 5 click" changes.

Do you want to report abuse regarding "Buck 5 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck 5 click

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 click accepts a wide voltage range on its input - from 5V to 30V.

buck5_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : sep 2020.
  • Type : SPI type

Software Support

We provide a library for the Buck5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck5_cfg_setup ( buck5_cfg_t *cfg );

  • Initialization function.

    BUCK5_RETVAL buck5_init ( buck5_t ctx, buck5_cfg_t cfg );

Example key functions :

  • This function wake up the chip.

    void buck5_power_on ( buck5_t *ctx );

  • This function reset the chip.

    void buck5_reset ( buck5_t *ctx );

  • Maximum output voltage is 5.5V (255 set value), and minimum output voltage is 1V (0 set value).

    void buck5_set_output_voltage ( buck5_t *ctx, uint8_t voltage );

Examples Description

Buck 5 Click is a high-efficiency buck DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 click accepts a wide voltage range on its input - from 5V to 30V. The output voltage may be adjusted via the SPI interface, in the range from 0.9V to approximately 5.5V.

The demo application is composed of two sections :

Application Init

Initializes driver init, and enables the click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    buck5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck5_cfg_setup( &cfg );
    BUCK5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck5_init( &buck5, &cfg );

    buck5_power_on( &buck5 );
    buck5_reset( &buck5 );
}

Application Task

Increases the output voltage by 500mV every 3 seconds from MIN to MAX VOUT.


void application_task ( void )
{
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MIN );
    log_printf( &logger, "VOUT: MIN\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1000mV );
    log_printf( &logger, "VOUT: ~1V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1500mV );
    log_printf( &logger, "VOUT: ~1.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2000mV );
    log_printf( &logger, "VOUT: ~2V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2500mV );
    log_printf( &logger, "VOUT: ~2.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3000mV );
    log_printf( &logger, "VOUT: ~3V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3500mV );
    log_printf( &logger, "VOUT: ~3.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4000mV );
    log_printf( &logger, "VOUT: ~4V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4500mV );
    log_printf( &logger, "VOUT: ~4.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_5000mV );
    log_printf( &logger, "VOUT: ~5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MAX );
    log_printf( &logger, "VOUT: MAX\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AM/FM 2 click

0

AM/FM 2 Click is a compact add-on board that can be used to listen to music from the AM and FM radio bands. This board features the Si4732, a broadcast AM/FM/SE/LW/RDS radio receiver from Skyworks. This radio receiver integrates the complete broadcast tuner and receiver function from antenna input to digital audio output. In addition to the radio receiver, this Click board™ is equipped with the LM4910, a Boomer output capacitor-less stereo 35mW headphone amplifier from Texas Instruments. This amplifier can deliver 35mW of continuous average power to a 32Ω load with less than 1% distortion.

[Learn More]

NB IoT 2 click

5

NB IoT 2 Click is a compact add-on board that contains a compact LTE Cat NB2 module with ultra-low power consumption.

[Learn More]

Brushless 21 click

0

Brushless 21 Click is a compact add-on board suitable for controlling brushless DC (BLDC) motors with any MCU. This board features the AMT49400, an advanced 3-phase, sensorless BLDC motor driver with integrated power MOSFETs from Allegro Microsystems. The AMT49400 is rated for an operating voltage range from 4V to 16V. Motor rotation speed is controlled by applying a duty cycle command to the PWM input, while a simple I2C interface is provided for setting motor-rated voltage, rated current, rated speed, resistance, and startup profiles.

[Learn More]