TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137083 times)
  2. FAT32 Library (70223 times)
  3. Network Ethernet Library (56095 times)
  4. USB Device Library (46422 times)
  5. Network WiFi Library (42034 times)
  6. FT800 Library (41378 times)
  7. GSM click (29109 times)
  8. mikroSDK (26558 times)
  9. PID Library (26487 times)
  10. microSD click (25486 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 8 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 167 times

Not followed.

License: MIT license  

Accel 8 Click is an advanced 6-axis motion tracking Click board™, which utilizes the MPU6050, a very popular motion sensor IC, equipped with a 3-axis gyroscope and 3-axis accelerometer.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 8 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 8 click" changes.

Do you want to report abuse regarding "Accel 8 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Accel 8 click

Accel 8 Click is an advanced 6-axis motion tracking Click board™, which utilizes the MPU6050, a very popular motion sensor IC, equipped with a 3-axis gyroscope and 3-axis accelerometer.

accel8_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Accel8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void accel8_cfg_setup ( accel8_cfg_t *cfg );

  • Initialization function.

    ACCEL8_RETVAL accel8_init ( accel8_t ctx, accel8_cfg_t cfg );

  • Click Default Configuration function.

    void accel8_default_cfg ( accel8_t *ctx );

Example key functions :

  • This function reads Accel axis data.

    void accel8_get_accel_axis ( accel8_t ctx, int16_t x_axis, int16_t y_axis, int16_t z_axis );

  • This function reads Gyro axis data.

    void accel8_get_gyro_axis ( accel8_t ctx, int16_t x_axis, int16_t y_axis, int16_t z_axis );

  • This function returns Interupt state.

    uint8_t accel8_get_interrupt ( accel8_t *ctx );

Examples Description

This application measures accelermeter and gyroscopic data and temperature.

The demo application is composed of two sections :

Application Init

Initialization driver init, reset chip and start configuration chip for measurement.


void application_init ( void )
{
    log_cfg_t log_cfg;
    accel8_cfg_t cfg;

    uint8_t temp_write;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    accel8_cfg_setup( &cfg );
    ACCEL8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel8_init( &accel8, &cfg );

    log_printf( &logger, " *-* Device Reset *-* \r\n");
    temp_write = ACCEL8_PM1_DEVICE_RESET;
    accel8_generic_write( &accel8, ACCEL8_REG_PWR_MGMT_1, &temp_write, 1 );
    temp_write = ACCEL8_GYRO_RESET | ACCEL8_ACCEL_RESET | ACCEL8_TEMP_RESET;
    accel8_generic_write( &accel8, ACCEL8_REG_SIGNAL_PATH_RESET, &temp_write, 1 );

    log_printf( &logger, " *-* Device Configuration *-* \r\n" );
    accel8_default_cfg ( &accel8, ACCEL8_INTE_DATA_RDY_ENABLE, ACCEL8_GYRO_CFG_FULL_SCALE_RANGE_250dbs, &range);

    Delay_ms ( 1000 );
    log_printf( &logger, " --- Start Measurement --- \r\n" );
}

Application Task

Reads Accel X/Y/Z axis, Gyro X/Y/Z axis and device Temperature. All data logs on the USBUART every 2 sec.


void application_task ( void )
{   
    float temperature;
    int16_t x_gyro_axis;
    int16_t y_gyro_axis;
    int16_t z_gyro_axis;
    int16_t x_accel_axis;
    int16_t y_accel_axis;
    int16_t z_accel_axis;

    //  Task implementation.

    accel8_get_accel_axis( &accel8,&x_accel_axis, &y_accel_axis, &z_accel_axis );
    accel8_get_gyro_axis( &accel8, &x_gyro_axis, &y_gyro_axis, &z_gyro_axis );
    temperature = accel8_get_temperature( &accel8 );

    // LOGS DATA

    log_printf( &logger, "________________ Accel 8 click _________________\r\n" );
    log_printf( &logger, "|  Data   | X axis | Y axis | Z axis |  Range  |\r\n" );
    log_printf( &logger, "|_________|________|________|________|_________|\r\n" );
    log_printf( &logger, "|  Accel  | %d  | %d  | %d  | %dg |\r\n", x_accel_axis, y_accel_axis, z_accel_axis, accel_range );
    log_printf( &logger, "|_________|________|________|________|_________|\r\n" );
    log_printf( &logger, "|  Gyro   | %d  | %d  | %d  | %ddps|\r\n", x_gyro_axis, y_gyro_axis, z_gyro_axis, gyro_range );
    log_printf( &logger, "|_________|________|________|________|_________|\r\n" );
    log_printf( &logger, "|  Temp   | %.2f  C         |\r\n" , temperature);
    log_printf( &logger, "|_________|_________________|\r\n" );

    log_printf( &logger, " \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel8

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

SPI T6963C Examples

0

Examples shows simple use of SPI T6963C Library

[Learn More]

Air Quality 11 click

0

Air Quality 11 Click is a compact add-on board for monitoring and analyzing indoor air quality. This board features the ENS161, a multi-gas sensor from ScioSense based on metal oxide (MOX) technology, to detect a range of volatile organic compounds with high sensitivity. The board supports I2C and SPI communication protocols, allowing flexible integration with various MCU platforms. It can calculate equivalent CO2 and TVOC levels and provide standardized air quality indices directly on-chip.

[Learn More]

MIC33153 click

0

MIC33153 click is a DC-DC adjustable step-down (buck) converter that is designed to deliver a substantial amount of current to very demanding loads, with the voltage output up to 3.5V.

[Learn More]