
1

mikroPascal to mikroBasic Convertor

2013-05-10

Content

1 Introduction .. 1

2 Usage .. 1

2.1 Interactive mode .. 1

2.2 Batch mode ... 2

3 Considerations .. 2

4 Still to do manually ... 3

4.1 Convert the “With” statement ... 3

4.2 Converting “Loose” code .. 3

5 Acknowledgements .. 4

1 Introduction

This tool is a simple mikroPascal to mikroBasic source code convertor. The tool can convert complete mP units to

mB modules and complete mP programs to mB programs.

Additionally the possibility exists to convert loose definitions and/or loose code (not embedded in a program or

unit environment).

There are some mP constructs that can not be translated to mB, or some loose code that can not be translated

correctly to mB, see Considerations and Still to do manually.

2 Usage

The tool is a stand alone tool, it can not be started from within the compiler’s IDE.

There are 2 possible usages of the tool: interactive mode and batch mode.

2.1 Interactive mode

After starting the tool the user must take following steps:

 Copy some Pascal code to the clipboard (select the code, press control C),

 Paste that pascal code in the “Pascal” field of the tool (press Control V in the Pascal field),

 Press “>> TransLate >>” , and

 Copy the translated code in the “Basic” field of the tool to the clipboard (press control A, Control C in the

“Basic” field,

 Past the clipboard contents to where the translated code is to be used (select the destination and press

Control V).

2

2.2 Batch mode

Here the tool is called in a batch file. The command line(s) in that file contains (besides the name of the tool

executable) 2 parameters separated by a comma: the mP source file and the mB destination file.

If the parameters contain spaces they will have to be enclosed in double quotes. Both parameters and the name

of the tool executable can contain a path (directory info), see example below.

Example of file “BatchConversion.bat”:

@echo off

@echo Running Convertor Test

Pascal_to_Basic_Convertor.exe TestBasics.mpas,_TestBasics.mbas

Pascal_to_Basic_Convertor.exe Test.mpas, _Test.mbas

Pascal_to_Basic_Convertor.exe TestBasics2.mpas, _TestBasics2.mbas

Pascal_to_Basic_Convertor.exe ..\..\Test_IFDEF.mpas, .._Test_IFDEF.mbas

When executing above batchfile (by double clicking it) 4 conversions are done subsequently.

3 Considerations
 Currently the tool can only convert mP for PIC source code to mP for PIC source code, but the tool can

most probably also be used with other mP source code.

 The mP code submitted to the tool is assumed to be compilable in an mP compiler. If non compilable

code is submitted then also the generated mB code will be wrong. The tool does no syntax checking (that

is the task of the compilers)

 The tool can not convert the mP “with” statements. There is no equivalent in mB for it. The user has to

make the necessary changes to cope with this. An extra comment is added in the basic code to signal a

“with” statement.

 Loose code that is preceded by definitions (types, constants, variables etc.) has to be embedded in

“begin” “end” statements, otherwise the tool will treat the code as as if it is also a definition as the one

preceding it.

 The tool does not take note of compiler directives, it only translates them into their mB syntax. This

means that (to the tool) the mP code looks like it there are no directives present at all, the tool can not

know e.g. which values of the compiler directive are mutual exclusive. So, make sure the mP code also

looks OK if the compiler directives are not there.

There are a few exeptions to this principle, it is allowed to do the following with compiler directives:

o Make double routine definitions, e.g.
 {$IFDEF purePascal}
 function uGLCD_Char_Ptr(ch: byte): ^const byte;

{$ELSE}

procedure uGLCD_Char_Ptr(ch: byte);

{$ENDIF}

begin

 if FontFixed then

3

o Make double record definitions, e.g.
{$ifdef abd}

type xxx = record

{$else}

type fff = record

{$endif}

 a,b,c: byte;

end;

In all other conditions, where the presence of the compiler directive does’nt matter for the validity of the

code (= translatable from the tool’s point of view), compiler directives can be of course used freely, e.g.:
{$IFDEF abc}

var aa: byte;

{$ELSE}

var aa: dword;

{$ENDIF}

4 Still to do manually

4.1 Convert the “With” statement

The translation of the “with” statement existing in mP is not done during the conversion. In stead a comment is

added: '?? <-- With statement not supported in mB

The user himself must add manually add the record variable name to each of its members.

Example: the result after conversion can e.g. be:

with RecordName do '?? <-- With statement not supported in mB

 'begin

 Field1 = Value1

 Field2 = Value2

 'end

This has to be changed by the user as follows:

 RecordName.Field1 = Value1

 RecordName.Field2 = Value2

4.2 Converting “Loose” code

Loose code (= code not embedded in a unit/module or in a program layout) that is preceded by definitions (types,

constants, variables etc.) has to be embedded in “begin” “end” statements, otherwise the tool will treat the code

as as if it is also a definition as the one preceding it. If no definitions are preceding the mP source code then the

additional “begin” “end” block statements are not needed.

4

Example (mP):

type a= byte; // <----------- some definition

for I := 0 to 10 do

begin

 // do some things

end;

mB output:

typedef a as byte ' <------------ some definition

typedef for I : as 0 to 10 do ' <----- messed up translation

'begin

 ' do some things

'end ' <----- messed up translation

mP code to be changed in: (adding “begin” and “end” around the code)

type a= byte;

begin // <--------------------- additionally

for I := 0 to 10 do

begin

 // do some things

end;

end; // <---------------------- additionally

correct mB output:

typedef a as byte

'begin <------------------------ can be removed

for I = 0 to 10

'begin

 ' do some things

next I

'end <-------------------------- can be removed

The user can remove the (commented out) “begin””end” lines from the generated mB code.

5 Acknowledgements
Thanks to Janni for the help with the testing of the tool, the problem reports and the improvement suggestions.

[end of document]

