
CC31xx OTA Sample Application 1

CC31xx OTA Sample Application

Introduction
Over The Air (OTA) update is wireless delivery of new software updates and/or configurations to embedded devices
and with the concept of Wireless Sensor Network and Internet of Things, OTA is an efficient way of distributing
firmware updates or upgrades.

OTA Library Implementation

System Block Diagram

Module Descriptions

Extlib_ota module

•• Connects to the OTA server
•• Downloads the list of updates depending on the HOST/NWP version
•• Searches for update in the cloud directory /Vid00_Pid00_VerAAXX, this enables the vendor to put updates for a

specific product and version
• Supports file name pattern: faa_sys_filename.ext , where aa is the flag for secured file, signature file, use external

storage, reset NWP. Refer to ‘File Naming Convention’ section for details.
•• Downloads all update files and can store it on SFLASH or on an external storage.
• Instructs the host application on how to proceed (Reset MCU, reset NWP, …)

http://processors.wiki.ti.com/index.php?title=File%3AOta_sys_block.png


CC31xx OTA Sample Application 2

•• Supports Non-Os time sharing and FSM - save progress info, return after every step
•• Saves statistics into file "/sys/otastat.txt" and also uploads it onto the cloud
•• Restrictions

•• Uses 2 secured socket (CC3x00 support only 2 secured sockets)
•• Max of 16 files in each update

Extlib_file_commit (FLC) module

•• Accesses the SFLASH file system (Open, Read, Write, Close)
•• Manages the MCU image commit process (Valid for CC3200 only):

•• Uses /sys/mcubootinfo.bin file to identify active image (1, 2) and image status (TESTING, TESTREADY,
NOTEST).

•• Selects the next image to be updated
•• Allows testing the new image by setting TESTREADY and signaling reboot.
•• Commits the new image when indicated by host application.

High Level Flow
1.1. OTA App periodically calls the local OTA client to connect to the OTA server and check for updates.
2. OTA client send “update_check” request with vendor id , ask OTA server for a list of resources
3.3. OTA Server based vendor id sends back the list to resources to update
4. OTA client send “metadata” request with next resource id, asking for specific resource information
5.5. OTA server sends back the CDN domain and path to the resource
6.6. OTA app call CDN Client to download the resource to the File system (or to external storage)
7.7. CDN client, using HTTP requests, downloads the file in chunks into the File storage
8.8. Steps from 4 to 8 are repeated until each resource in the list is updated.
9.9. OTA returns DOWNLOAD_DONE to Host along with reset MCU and/or NWP flag.
10.10. Host activates the commit process.



CC31xx OTA Sample Application 3

OTA Application State Machine

http://processors.wiki.ti.com/index.php?title=File%3AOta_state_machine.png


CC31xx OTA Sample Application 4

Sequence Diagrams

OTA client/server sequence

Example OTA Update Application
This application focuses on showcasing CC3100’s ability to receive firmware update and/or any related files over the
internet enabled Wi-Fi interface. The example uses Dropbox API App platform to store and distribute the OTA
update files.
An APP on Dropbox API platform can be looked at as a network accessible drive where user contents are arranged
as a tree of files and/or folders. The OTA library expects a folder at the top level which is pointed to via
VendorString (the folder name on Dropbox), set during OTA initialization. This top level folder should contain the
files to be updated directly and no folders. The OTA library also puts some restriction on the file names (see File
Naming Convention for OTA on Dropbox section). File(s) with other name pattern will be rejected.
The VendorString can be constructed in a variety of ways and as an example this application constructs it by
appending the ota sample file version and Service Pack version to a macro OTA_VENDOR_STRING defined in
otaconfig.h file.
Assuming the current ota sample file (otaSampleFile.txt) on device has version number 01 and service pack running
on the device holds the version number 2.1.0.12.31.1.1.0.5.1.0.3.20 and OTA_VENDOR_STRING is defined as
Vid01_Pid01_Ver, the application constructs the VendorString by appending the ota sample file version and 4th
byte of NWP version (shown in red) to the macro i.e. Vid01_Pid01_Ver0112. This folder on Dropbox should
contain all the files that need to be updated. If left empty OTA library assumes a NO_UPDATE condition.
This application checks for the update every 10s in folder based on the logic mentioned in above paragraph.

http://processors.wiki.ti.com/index.php?title=File%3AOta_sequence.png


CC31xx OTA Sample Application 5

Source Files briefly explained

• NON-OS – Directory holding non-os based implementation of the application
•• main.c - Contains the core logic for the application.
•• net.c - Wrapper function implementation for required SL_HOST APIs
•• otaconfig.h - Contains OTA server configuration details

File Naming Convention for OTA on Dropbox
The files stored on the cloud should be in the following format

/VidVV_PidPP_VerXXYY/fAA_sys_filename.ext

The directory /VidVV_PidPP_VerXXYY
• VidVV – Vendor id number
• PidPP – Product id number
• XX – OTA sample file version
• YY – Service Pack version
The filename fAA_sys_filename.ext
• fAA – File Flags

•• f - File prefix
•• AA - File flags bitmap :

•• 01 - The file is secured
•• 02 - The file is secured with signature
•• 04 - The file is secured with certificate
•• 08 - Don't convert _sys_ into /sys/ for SFLASH
•• 10 - Use external storage instead of SFLASH
•• 20 - Reserved.
•• 40 - NWP should be reset after this download
•• 80 - MCU should be reset after this download

•• sys optional and can be converted to /sys/ directory
•• ext

•• signature - .sig, filename must be the name of the secured file
•• certificate - .cer, filename must be the name of the secured file

For example: Vid01_Pid33_Ver0012/f43_sys_servicepack.ucf is for vendor id 01, product id 33, version 0012 and
secured file /sys/servicepack.ucf
Following table list the file names of fixed know image types:



CC31xx OTA Sample Application 6

Image Type OTA File Name

Service Pack f43_sys_servicepack.ucf

Service Pack signature f00_sys_servicepack.sig

Note: 'f43_sys_servicepack.ucf' is the service pack binary file and shouldn't be confused with uniflash session file.

Usage

Flashing
1.1. Open Uniflash tool for CC3xxx
2.2. Mount CC3100 booster pack on CC31XXEMUBOOST board.
3.3. Format the sFlash.
4.4. Program the service pack.

Creating Dropbox API application
1.1. Create an account with Dropbox and login
2. Go to https:/ / www. dropbox. com/ developers/ apps/ create and choose dropbox API app
3. Choose Files and Datastores and Yes My app only needs access to files it creates.
4. Provide a suitable name for the APP and click “Create APP” button
5. You will be redirected to Apps setting page. Scroll down to Generated access token and click generate. Copy

and save the generated token.
6. Go to https:/ / www. dropbox. com/ home/ Apps
7.7. Click on the application name
8. Create a new folder and name it Vid01_Pid01_VerXXYY. Refer to “Configuring the application for new

Dropbox account” section for details.

Configuring the application for new Dropbox account
1.1. Open otaconfig.h and update the following Parameters

•• OTA_SERVER_REST_HDR_VAL - Set this to Dropbox App token generated in the previous steps
2. Upload the servicepack, ota sample file f08_otaSampleFile.txt and other user file into Vid01_Pid01_VerXXYY

folder on Dropbox server where XX is the ota sample file version on serial flash (00 should be used if file is not
flashed) and YY is the 4th byte of the NWP version.

Building Library
1. Import the flc_lib and ota_lib library projects into the workspace. Make sure the 'Copy projects into workspace'

is unchecked.
2. Build flc_lib and ota_lib library projects.

Running
1.1. Mount the CC3100 Booster-pack on MSP430F5529LP.
2. Configure the terminal-program for seeing the logs - [| CC31xx_&_CC32xx_Terminal_Setting_Wiki [1]] has

detailed instructions for configuring the terminal-program
3. Open sl_common.h and change SSID_NAME, PASSKEY and SEC_TYPE per your access-point's properties.
4. Build and run ota_sample_app projects.
5.5. The application will download the new servicepack and files available at dropbox.

https://www.dropbox.com/developers/apps/create
https://www.dropbox.com/home/Apps
http://processors.wiki.ti.com/index.php/CC31xx_&_CC32xx_Terminal_Setting


CC31xx OTA Sample Application 7

6.6. See the self-explanatory logs on the terminal-program's console.

http://processors.wiki.ti.com/index.php?title=File%3AOta_image_1.png
http://processors.wiki.ti.com/index.php?title=File%3AOta_image_2.png


CC31xx OTA Sample Application 8

Porting OTA Library to other servers

Key Macros/Functions For Dropbox Descriptions

OTA_SERVER_NAME api.dropbox.com The server/domain name

OTA_SERVER_SECURED 1 If to use secure sockets

OTA_SERVER_REST_UPDATE_CHK /1/metadata/auto/ REST API to get resource list

OTA_SERVER_REST_RSRC_METADATA /1/media/auto REST API to resource details

OTA_SERVER_REST_HDR Authorization: Bearer Authorization header

OTA_SERVER_REST_HDR_VAL Authorization header value

LOG_SERVER_NAME api-content.dropbox.com Log server

OTA_SERVER_REST_FILES_PUT /1/files_put/auto/ REST API to write files

OtaClient_UpdateCheck http_build_request Get the resource list

json_parse_dropbox_metadata

OtaClient_ResourceMetadata http_build_request Get per-resource details

json_parse_dropbox_media_url

This section lists down and describes the key parameters and functions that are server specific and are required to be
re-implemented to port this library to a new server:

Server Info Structure
This structure holds the server related parameter like the domain name, authorization key, REST APIs, log server
and vendor string. Following member variables are required to be initialized and passed to OTA Library as part of
initialization.
server_domain: This holds the server name for the OTA server. Eg: api.dropbox.com for Dropbox REST APIs 
secured_connection: This holds if the connection to the OTA server and CDN server is secure or non-secure. 
rest_update_chk: This defines the REST API for getting the list of resources from the server Eg: /1/metadata/auto/ 
rest_rsrc_metadata: This defines the API for getting the details of each resource on the server Eg: /1/media/auto 
rest_hdr: This holds the additional HTTP headers (like authorization) for the server Eg: Authorization: Bearer 
rest_hdr_val: Holds the header value, like the access key. Eg:

http://processors.wiki.ti.com/index.php?title=File%3AOta_image_3.png


CC31xx OTA Sample Application 9

BwPuaYu9AoAAABBBAAAAA-uhCfuTU_Jw54oBVgBCtZaMAsDfhTZcV8lLK7ruzD51r 
log_server_name: Server name for logging the OTA logs Eg: api-content.dropbox.com 
rest_files_put: This holds the REST API for writing to the server Eg: /1/files_put/auto/ 
log_mac_address: MAC address of the current device using the OTA library. This is used for logging

OTA Client Functions
OtaClient_UpdateCheck: This function gets the list of updates from the OTA server. Internally, sends the
rest_update_chk request and parses out the response to get the list of resources (files) available. In case of Dropbox,
json_parse_dropbox_metadata, parses the response.
OtaClient_ResourceMetadata: This function gets the details of requested resource including the resource path on
CDN client and resource flags. Internally uses rest_rsrc_metadata to get the resource details. In case of Dropbox,
json_parse_dropbox_media_url, parser the response.

Limitations/Known Issues
1.1. OTA cannot update a file to a newer file of same name if the size of the newer file is larger than the max size

allocated to that file.
2.2. Rollback functionality for the service-pack is not supported.
3.3. Does not support CC3100 PG 1.32 device

Abbreviations
•• Vid: Vendor ID
•• Pid: Product ID
•• Ver: Version ID
•• CDN: Content Delivery Network

References
[1] http:/ / processors. wiki. ti. com/ index. php/ CC31xx_& _CC32xx_Terminal_Setting

http://processors.wiki.ti.com/index.php/CC31xx_&_CC32xx_Terminal_Setting


Article Sources and Contributors 10

Article Sources and Contributors
CC31xx OTA Sample Application  Source: http://processors.wiki.ti.com/index.php?oldid=194880  Contributors: A0132173, Raghshenoy

Image Sources, Licenses and Contributors
Image:Ota sys block.png  Source: http://processors.wiki.ti.com/index.php?title=File:Ota_sys_block.png  License: unknown  Contributors: A0132173
Image:Ota state machine.png  Source: http://processors.wiki.ti.com/index.php?title=File:Ota_state_machine.png  License: unknown  Contributors: A0132173
Image:Ota sequence.png  Source: http://processors.wiki.ti.com/index.php?title=File:Ota_sequence.png  License: unknown  Contributors: A0132173
Image:Ota image 1.png  Source: http://processors.wiki.ti.com/index.php?title=File:Ota_image_1.png  License: unknown  Contributors: A0132173
Image:Ota image 2.png  Source: http://processors.wiki.ti.com/index.php?title=File:Ota_image_2.png  License: unknown  Contributors: A0132173
Image:Ota image 3.png  Source: http://processors.wiki.ti.com/index.php?title=File:Ota_image_3.png  License: unknown  Contributors: A0132173


	CC31xx OTA Sample Application
	Introduction
	OTA Library Implementation
	System Block Diagram
	Module Descriptions
	Extlib_ota module
	Extlib_file_commit (FLC) module

	High Level Flow
	OTA Application State Machine
	Sequence Diagrams
	OTA client/server sequence


	Example OTA Update Application
	Source Files briefly explained

	File Naming Convention for OTA on Dropbox
	Usage
	Flashing
	Creating Dropbox API application
	Configuring the application for new Dropbox account
	Building Library
	Running

	Porting OTA Library to other servers
	Server Info Structure
	OTA Client Functions

	Limitations/Known Issues
	Abbreviations


