USB MSD Host Library

1 Content

2 INrOAUCHION. ettt et

3 USQBE IN @ PrOBIraM ceeeeeiiieeiiiiiteee e e eesiittte e e e e e eeinree e e e e e e s e sssreaeeeeeeens
3.1 Initialisation and test for readiness........cccceveerieriirsenseeneennen.
3.2 Reading and Writing SECLOrSccoccieeiieciiiieecieee e

4 |dentification of the connected MSD device.ccoeveeneeneenniennnenne
4.1 Numerical identifiers.......ccoeerieeniiinee e
4.2 String Identifiersuve v

5 Assumptions about the USB memory stickcccccevviieieniiiieeeicinennn,

6 Interface of the Library.......cccoiee i
6.1 USB_HOST _MSD_Library...ccccccueeeeecieee e eeiieeeeevreeeeeveeee e
6.2 USB_HOST_Common_Library......cccccceeeeecieeeeecieeeeecieeeeecvieee e

2 Introduction

2017-01-03

This is a library for making an USB host capable of reading and writing sectors from/to USB memory

sticks (pen drives) or card readers. At this moment only a version for PIC24 is available.

@To read/write actual files from/to the USB memory stick you also need e.g. a Fat16 or Fat32

library.

The library is tested with 2 sticks of different brands and one card reader of a third brand. (Still no

guarantee...)

The library consists of 2 files:

“UsSB_HOST MSD Library” and “USB_HOST Common Library”. The first one, which has to be in a uses

clause in your project, uses in turn the second one. Both should be entered in the project manager.

3 Usage in a program

3.1 Initialisation and test for readiness
The initialisation of the library and test for readiness of the USB memory stick is done as follows:

uses USB_HOST MSD Library, UartUtils;

begin
{ Main program }

InitMain;

InitUsb; // <---— initialisation of the library
repeat

until USB_MSD Device Ready or // <-—- test for readiness of the USB stick

(Usb_Error > 0) or
(Msd_Error > 0);

if USB_MSD Device_Ready then // the USB memory stick is ready
begin

uart write line('');

uart write line('MSD Ready');

uart write line('');

LatA.0 := 1; // signal readiness (example)
USB_MSD Device_ Vendor (TmpS) ; // show some MSD stick data
uart write line (TmpS);

USB_MSD Device Product (TmpS) ; //

uart write line(TmpS) ;

USB_MSD Device Version (TmpS); //

uart write line(TmpS) ;

uart write line('');
end
else
begin // the USB memory stick gives an error
uart write line word hex (USB_Error);
uart write line word hex (MSD_Error) ;
while true do; // stop all processing
end;

The above example shows some vendor and product info if the device becomes ready, and the error
codes if the device does produce an error.

As you can see the initialisation is done with the “InitUsb” routine, the readiness of the stick is tested
with “USB_MSD_Device_Ready”. In case you do not want to block the software if
“USB_MSD_Device_Ready” stays false, you should also test both “Errors” (USB_Error and
MSD_Error). If one of these becomes > 0 then you can stop waiting for “USB_MSD_Device_Ready”,
see the example above.

“InitUsb” has in principle to be called only once, all USB activity is handled under interrupt, also
attachment and detachment of the device.

3.2 Reading and Writing sectors

Reading and writing a sector (called a “block” in MSD terminology) is done as follows:

var Buff : array[512] of byte;
Success : boolean;

Success := USB_MSD_Read_ Sector (2000, Buff); // sector 2000 is read into Buff
// process the buffer content here

// define the buffer content here
Success := USB_MSD Write_ Sector (5000, Buff); // Buff is written to sector 5000

As you can see this is very similar to the sector read/write routines of an SD/MMC
card.

4 Identification of the connected MSD device.

The device connected to the USB host can be identified by in total 6 identifiers (3 numerical and 3
strings). All identifiers are present in the so called USB Devicedescriptor or pointed to by it.

All identifiers are only valid if “USB_MsSD Device Ready” is true.

4.1 Numerical identifiers
The following 3 functions return each a word value:

function USB Device Vendor : word;
function USB_Device_ Product: word;

function USB_Device DeviceRelease: word; // BCD value

You can use these values to check which USB MSD device is connected to the host.

4.2 String identifiers

These 3 identifiers are only exported in the library interface if the “usB_nosT sTRINGS” compiler
directive in your project is defined. The best way to do this is adding the directive to a .pld file which
is part of the project. Make sure the USB host library is also part of the project, it is compiled
depending on that directive.

If the directive “usB_HosT_sTRINGS” is defined in the project, then the program using the USB MSD
Host library must define 3 strings in which the identifiers will be presented:

{SIFDEF USB_HOST STRINGS}
var USB_Device ManufacturerString,

USB_Device ProductString,

USB _Device SerialNrString: string[USBHostStringSize];
{SENDIF}

In case a string identifier is not defined in the USB device an empty string will be the result.

5 Assumptions about the USB memory stick
The library assumes a number of things about the USB memory stick connected:

e The stick (or card reader) is powered from an external 5V source

e The MSD device is defined in the first interface in configuration 0 (USB)

e The interface descriptor class, subclass and protocol are checked against the standard
e The devices USB bulk endpoints must have 64 bytes of length

e The device must be a Full speed or High speed type (always Full speed is mode is used)
e The device’s “Block size” (= sectorsize) must be 512 bytes

6 Interface of the Library

6.1 USB_HOST_MSD_Library

uses USB HOST Common Library;

[e
// interface

A

procedure USB_Interrupt;
// To be called from the main interrupt routine (iv IVT_ADDR USB1INTERRUPT)

procedure InitUsb;
// To be called once in the initialisation phase of the software

function USB_MSD Device_ Ready: boolean;
// Returns TRUE if an USB MSD device is attached and accessible

function USB_MSD Read Sector (Sector: DWord; var Buffer: array[512] of byte):
boolean;

// Reads one sector (number = "Sector")from the USB MSD device into "Buffer"
// Returns TRUE if successful, otherwise returns FALSE

function USB_MSD Write_Sector (Sector: DWord; var Buffer: array[512] of byte):
boolean;

// Writes one sector (number = "Sector")from "Buffer" into the USB MSD device
// Returns TRUE if successful, otherwise returns FALSE

procedure USB_MSD Device_ Vendor (var S: string[8]);
// Returns the vendor info from the "Inquiry" data

procedure USB_MSD Device_ Product(var S: string[16]);

// Returns the product info from the "Inquiry" data

procedure USB_MSD Device_ Version(var S: string[4]);
// Returns the version info from the "Inquiry" data

procedure USB_MSD Device Capacity(var NrBlocks: DWord; var BlockSize: word);
// Returns the number of blocks (or sectors) in NrBlocks and
// the block (or sector) size in bytes in BlockSize

var USB_Error: word;

// Returns the USB Error

// in case USB MSD Device Ready stays FALSE

// The USB Error signals one error per bit (see below for the possible values)

var MSD_Error: word;

// Returns the MSD Error (see below for the possible values)

// in case USB_MSD Device Ready stays FALSE

// The MSD Error signals one error per bit (see below for the possible values)

function USB Device Vendor : word;
// Returns the USB Device Vendor numerical value. Only valid if
USB_MSD Device Ready

function USB_Device_ Product: word;
// Returns the USB Device Product numerical value. Only valid if
USB_MSD Device Ready

function USB_Device_DeviceRelease: word; // output is in BCD!

// Returns the USB Device Release numerical value. Only valid if
USB_MSD Device Ready

{SIFDEF USB_HOST_ STRINGS}

const USBHostStringSize = USBHostStringSize;
{SENDIF}
A it ittty
/] —mmmmm e USB and MSD Error Constant Definitions ------------------——
A
const

// USB_Error constants

USB_DEVICE_DESCRIPTOR_ERROR = $001; // bit O

USB_CONFIG_DESCRIPTOR_ERROR = $002; // bit 1

USB_INTERFACE DESCRIPTOR ERROR = $004; // bit 2

USB_INTERFACE DESCRIPTOR CLASS ERROR = $008; // bit 3

USB_INTERFACE DESCRIPTOR SUBCLASS ERROR = $010; // bit 4

USB_INTERFACE DESCRIPTOR PROTOCOL ERROR = $020; // bit 5

USB_ENDPOINT DESCRIPTOR_ERROR = $040; // bit 6

USB_ENDPOINT_ DESCRIPTOR_ATTRIBUTES ERROR = $080; // bit 7

USB_ENDPOINT DESCRIPTOR_PACKETSIZE ERROR = $100; // bit 8
const // MSD_Error Constants

MSD BLOCK SIZE ERROR = $001; // bit O

MSD READ SECTOR_ERROR = $002; // bit 1

MSD WRITE SECTOR ERROR = $004; // bit 2

MSD READ CAPACITY ERROR = $008; // bit 3

MSD_READ_INQUIRY ERROR = $010; // bit 4

MSD NOT READY ERROR = $020; // bit 5

6.2 USB_HOST_Common_Library

{SIFDEF USB_HOST_ STRINGS} const _ USBHostStringSize = 30; // string size to be used
for the following 3 strings
var USB_Device ManufacturerString,
USB_Device ProductString,
USB Device SerialNrString: string[USBHostStringSize]; external;
// content of the strings is only valid if USB MSD Device Ready is true
{SENDIF}

[end of document]

