
MikroPascal ST7565 package:

Intro

The Sitronix ST7565 family of LCD controllers are available in a lot of commercially available LCD 
modules, including the DOGM, Displaytech, and Newhaven modules. The controller integrates a lot of 
functions which were performed with external analog circuitry on older units, making the initial setup 
more complicated, since a lot of internal voltage regulation has to be set up for each manufacturer and 
model of controller. This library attempts to provide a basic set of primitive procedures which can 
adapt to any model of ST7565 based LCD module. 

Goals

This project provides for basic driving of an LCD module through the parallel interface, and the 8080 
variant. This does not attempt to support either SPI or 6800-parallel interface. Adaptations to these 
interfaces are welcome. This library provides basic cursor positioning and byte writing, and also 
complete frame buffer writing. No attempt will be made to furnish basic graphic functions such as line, 
circle, box, etc. 

In the future, I intend to add text routines.

This was developed and tested in mikroPascal for PIC32, but should be easily portable to PIC24 and 
18, and with some adjustment probably PIC16 and AVR. Tested variants for these platforms are 
welcome.

Background

The PDF for the Sitronix controller chip can be found here: 
http://www.newhavendisplay.com/app_notes/ST7565.pdf 

There is also useful information from DOGM: 

http://www.lcd-module.com/eng/pdf/grafik/dogm128e.pdf 

Hardware

The 8080 interface requires the C86 line to be connected to ground. The other five control lines must 
be interfaced to the microcontroller. Those lines are named:

6800 Nomenclature 8080 Nomenclature Library Variable
A0 A0 STA0 

http://www.newhavendisplay.com/app_notes/ST7565.pdf
http://www.lcd-module.com/eng/pdf/grafik/dogm128e.pdf


RES RES STRS

CS1 CS1 STCS 

E /RD STRD

R/W /WR STWR

Declare the variables in the right column to be 'at' the appropriate pin as in the example.

Also, the data bits (D0-D7) are set up to be in scrambled order, in case the data bits on the LCD don't 
correspond exactly to a PIC port. If there is a direct correspondence between the LCD data port and a 
PIC port, the code can be simplified, and will run faster on an 8-bit PIC. There is no noticeable slowing 
from using scrambled bits on a PIC32.

Procedures

STInit(array[20] of byte);

The general procedure for using a ST7565 based controller is to first initialize it, and then write to the 
LCD RAM. The initialization in this routine is done in two parts; the basic hardware reset, and then a 
series of initialization commands. The basic opcodes are all one byte, but some commands are two-
byte. The actual sequence will vary from one LCD module to another, and so these codes need to be 
placed into this array of byte to assure the correct initialization. A number of opcodes are predefined as 
constants. 

The intent of this procedure is to allow all the particulars for a given model of display module to be 
embedded into the array. Then the procedure simply needs to be called with the correct array as its 
argument in order to set all the correct settings of the particular model. Note that some setting may 
have to be dynamically adjusted, so a subsequent call to STWriteCode will be needed after the call to 
STInit.

This library was tested on the Displaytech xxx, and the array is included. It is hoped that as users will 
submit tested initialization arrays after successfully testing.

The string size of 20 was chosen as a high number for initial settings. Normal strings typically run 
more like 12 or 14. The remaining elements must be padded with NOP instructions. Upon startup, these 
opcodes are all executed in order. Order is important for 2-byte instructions!

Unfortunately, there is no substitute for understanding the ST7565 instruction set and the specifications 
for the individual model of display module in order to create the initialization string. In addition to 
getting the voltage generator and contrast voltage settings right, the initialization string can set the 
display for 6 or 12 o'clock position, and other such settings that you might want to adjust. If, on the 
other hand, a furnished initialization string works with your module, you can simply use it, and move 
on to drawing graphics. The only tested string for this package is for the Displaytech xxx, though the 
one for DOGM should work, as it was copied directly from their literature.

STWriteCode(opcode : byte);



This primitive procedure writes one control byte.

STWriteByte(outport : byte);

This primitive procedure writes one data byte to the display. The column counter is automatically 
incrimented.

STWriteImage(image : ^const byte);

This paints the entire 128x64 screen with an image in constant (flash) memory. See example for usage.

STSetPage(arg : byte);

Sets the page to 0-7. Pages on the ST7565 work identically to the KS107 (existing GLCD library)

STSetCol(arg : byte);

Sets the column to 0-127. Columns on the ST7565 work identically to the KS107 (existing GLCD 
library)

STWriteBuffer(buffer : ^byte);

This paints the entire 128x64 screen with an image in RAM (framebuffer).

Acknowledgment:

This code sample taken from the CCS forum was invaluable in creating the basic I/O routines:

http://www.ccsinfo.com/forum/viewtopic.php?p=154055#154055 

Janni provided a lot of help on the forum, including pointers on pointers.

http://www.ccsinfo.com/forum/viewtopic.php?p=154055#154055

	Intro
	Goals
	Background
	Hardware
	Procedures
	Acknowledgment:

