~ MHAz Baghnnarsst Tutorizal Proacts «

(§) Visual TFT Files: The User Code program templates

EVENT COUNTER

Features and Controls Expansion Bay
Remove Panel Screws to Access

o) @
Complete with MikroBASIC Pro for PIC32 and dsP33EP MMB Example Files for a

””9”” MM’ COIIMC' Clllfcm D‘SP"Y Gﬂd"f (PIC18F MMB mPASCAL version coming soon)
MANUAL CONTENTS by ORDER: Version 3.0.0 12/15/2013

Introduction:

Legal Stuff.
First Things.

About Visual-TFT for new users:
Note to Experienced and Advanced level Users.
Visual-TFT.
About what V-TFT does not do.
What V-TFT is NOT.
What V-TFT IS.
What V-TFT Creates. I I I

The intentions of the manual and project example. i

VISUAL-TFT TIPS & TRICKS for success: ForAilSk?ll[fveéﬁ

Visual-TFT Components and Lavers Tutorials:

About Components and Objects in Visual-TFT.

Important facts about components “static” property.

How to Display Changing Alphanumerical Data with Components. NEW for Version 3.0
Making your own Components.

Layers and Layering Objects.

Object Layering in V-TFT.

ABOUT EVE FT800 PROJECT OBJECTS. NEW for Version 3.0
Objects and Layers used in the Example Project.

Moving Objects on the Layers Tutorial.

MegaHurts BONUS CONTENT Descriptions, Usage & Download Info. NEW for Version 3.0

The MAIN Loop and Multitasking in V-TFT Flowcharts.

Visual-TFT Project Files “User Code” Template Areas: Where they are and example usages in mikroBASIC Pro.
Overview of Program Files.
Colored view of blank main file.
Colored view of blank events code file.

COLOR Conventions used in the Code Listings.

Event Counter Program Main File code Listing.
Event Counter Program Events Code File code listing.

Stuff you can add and challenges for advanced users.

The V-TFT Driver File Breakdown of Important Parts for Users: NEW for Version 3.0
Overview of the Driver Module file.

Object Drawing Routines to Use List.
Dynamic Objects Properties Declarations.

Additional Community Submitted Tutorial Code Examples. Tips & Tricks & Project Expansions:
Alternative optimized code versions in 'events_code' file by Aleksandar Vukelic.
Sneak Peak of Mhz Ebayl (Expansion Bay One) R.E.G. Kit and Event Counter GUI update.

Credits and Thanks.
About the Author — As a separate PDF document that is available at Examples Libstock Blog for download.

http://www.libstock.com/blog_docs/get/59/1384164250-about-the-author.pdf

INTRODUCTION: !

Legal Stuff:

1 think there is a law somewhere that says I have to say this: Not responsible for anything that goes wrong. No warranty is
implied or applied. Use at Own Risk. If you suddenly feel ill or faint or vision goes blurry or experience chest pains or have
difficulty breathing, Stop using this Tutorial and seek medical attention. All trademarks are the properties of their owners.

Biest ntngs: For those friends viewing this from around the world; I am American- So Please Forgive My English.

I have No intentions of insulting anyone. So if you use any translator application(s) on this document, I did not say anything
about your Mother, Brother, Sister, Wife, Husband, Girlfriend, Boyfriend or any family members including the Dog or Cat no
matter what it says I said 0k? ;")

This is the manual for the V-TFT Event Counter Tutorial Example project. This manual has additional information about the
design and operation of the project and information about creating projects in V-TFT that apply in general so no matter which
programming language or hardware you are working with, the information still applies, unless stated otherwise.

All code examples and the entire project are in the mikroBASIC (mBASIC), language from MikroElektronika. This
manuals instructions assume the reader (you), have already read the V-TFT Help file that comes with it. If you have not read
the Help file, it advised that you do so first before reading this tutorial. It is not required to before using this manual, but this
manual is intended as a supplement to the Help file, not a replacement. There is information in the Help file you will also
need to know in order to be successful in creating working projects in V-TFT. I will try very hard to keep the references
generic and non-specific to any HW whenever possible. This can't be helped in the projects code listing section obviously.
Since all of the example code was written in mikroBASIC, I have included the 2 files complete code listings that are the
focus of this tutorials topics in this document so users of mikroC and mikroPASCAL have an easy way to also access their
contents.

I did not want to exclude any users of V-TFT just because I or you do not have and use all of the compilers. My wanting to
make sure everybody could benefit from the example project is how this PDF manual got started. Once that happened, it
seemed only natural to make use of its potential to include more than just commented text, and I just cannot selp myself from
pushing buttons and clicking format controls when they are on my screen.

This project is not a fully dressed out application as the result of keeping it sleek and simple. But it can be used as the starting
point for anyone to expand it more. That was intentional planning also.

I guess it could be thought of being kind of like a science experimenter kit many of us have grown up with. The parts are here
(mostly), you just have to finish putting it together the way you want.

This tutorial manual is also a work-in-progress effort. I want to give you as close to /00% of the accumulated knowledge
of using V-TFT as I can. But I cannot do it all at once, so there will be updates to this manual over time as I get the material
put into it. I am also learning to use some features of Apache Office that I have not tried before and the editing does not
always go as [would have liked. But I have discovered features that I can use to make this document present the information
in better ways than just text (and I'm sure some would really like that). (Or you can look at it as lessons in American English?)
So please bear with me as [work on getting this finished.

I hope you enjoy the results. R.M.T.

http://www.mikroe.com/

Note to Experienced and Advanced level Users:

While I targeted this manual as a beginners tutorial, I feel 1 included material that everyone, no matter the skill level, can find
useful. If not, you didn't waste any money right? Most of that material is in the section V-TFT TIPS & TRICKS but you
might find other bits of useful information in the rest of the material and I hope so. Check also the The MAIN Loop and
Multitasking in V-TFT Flowcharts section and challenges at the end of this document.

Visual-TFET (V-TFT here on), is a unique software development tool for creating GUI or non-GUI applications for all of
the Mikro Media Boards (MMB), and hardware development tools that use a TFT display device from MikroElektronika.
This means it also supports all of the different Compiler languages too. This makes it a very versatile platform, allowing users
to have the choices of what hardware and programming platforms they work with. That being said, it would be impossible for
me to write a tutorial that covers every HW device and programming language. So details are limited to being general and in
mBASIC.

Knowledge of programming Micro controllers in one of the programming languages {mBASIC , mPASCAL or mikroC}
is required to finish a V-TFT project and having a licensed unlocked Compiler (in one of the languages) to compile any
project(s) you make. V-TFT projects are foo big for Demo versions of the compilers.

The information in this document is intended to help you get a good idea of what is possible and not possible using V-TFT.
It was clear to me that new users can have a distorted idea of what V-TFT does and how to make use of what it actually can
do, from my own experiences and seeing what questions are being asked in the forums. I felt I could contribute some help to
the community of users by making this example project that explains in more detail how V-TFTs output code is organized.

One of the problems, I feel V-TFT causes, is that first time users initially are presented with program files it creates that are
not, on first look, understandable, because many new users have minimal experiences with multiple file projects and the V-
TFT Help file does not contain the information they need to clear up the confusion. It is also my hopes that MikroElektronika
will address this in the future.

V-TFT creates a Framework for you to fill out and complete to make a fully functional application. The Framework code

V-TFT produces to manage your screen display and TP input associated to your Objects usage is structured as a Task
(Routine. Check_TP()) that needs to be executed (called) repeatedly in order to detect (catch) TP touch activity. This Task does
not sit and wait for TP activity to happen and respond to it. It checks for activity when executed, and if none detected, exits the
Task Routine. So users have available the groundwork for multitasking Task (procedures) management. This powerful
framework design means you can make applications that are run entirely inside the Framework of the “Check TP” routine for
simple applications, or your project may require the management of other HW be done as a Task of their own.

This Tutorial and Example V-TFT Project — mikroBASIC Pro (for PIC32 mmB) Compiler Language Program files
demonstrate a simple 2 Task example to help you get familiar with the “User Code” areas and the Framework of the V-TFT
output Code Template so You can plan how to get your project idea up and working.

"isual TI:T About what V-TFT does not do:

It can not create fully programmed programmable applications from what you design in it. You will still have to edit at least
one of the files it makes in a compiler and add additional programming code to complete the templates of code it does make
for the objects you used on the projects screen(s).

The output for a project made in V-TFT must also be loaded in to a Compiler as a multiple file project so it can be compiled
in to the binary file needed to program a device with. V-TFT does not output files that are ready to be programed into a device.
The output of files it makes need to be put in to a compiler for the language it is set to use and compiled before the project can
be programmed into a device.

Only a very simple project could be made that did not require you to do additional programming. Sorry but you still have to do
some work. Good news is that it would not be as much as you would have to do if you did not use V-TFT.

W (EIEIRIA) What V-TFT is NOT:

V-TFT is not a add on library to the compilers. V-TFT is not a tool that makes /ibraries for the compilers either. V-TFT is
not a code editor or a code compiler. V-TFT is not a device programmer. V-TFT is not a device /library maker.

V-TFT is not required to be running while editing a project in a compiler or even required to be installed on a PC for the
project files it makes to be finished in a compiler and programmed into a device.

http://www.mikroe.com/
http://www.mikroe.com/
http://www.mikroe.com/visualtft/

V-TFT is a stand-alone development tool to aid the user (you), in creating TFT screen content that can be almost any mixture
of Touch Panel (7P), input controls and output displays of control settings, text, graphics and anything the target device is
capable of needing displayed on a TFT screen. V-TFT gives the user a graphical development environment in which to work
and a selection of screen Components (also referred to as Objects), you may use individually or in combination to make the
I/0 graphics you need for your desired applications. It (V-TFT), provides a What You See Is What You Get (WYSIWYG),
designing environment for the target hardware (HW) you want that it supports. V-TFT is a project application code template
generator. V-TFT is a projects screens code manager so users can have multiple screens for different organizations of I/O
designs as they need, within the capabilities of the target HW (memory available, MCU functions embedded).

WIHIEIIA What V-TFT creates:

V-TFT will make programming language code files based on your selections of project options to use. You can see more
information about this in the V-TFT Help File. The Help File will show you information about every menu item and control
available. What files are created and what they contain depends on the users project selections made at anytime during its
designing. If you need to, see the Help File for more information on this. V-TFT takes the graphical elements (Objects), you
place on a screen and creates the program template and program code that sends the data to a display controller to reproduce
the Objects as you designed them on a TFT TP screen. This is done for everything created in V-TFT or needed as supporting
Data or Executable code for a project so it will be included when the project is compiled before programming the target HW
device.

See the Help File about project Objects File and Resources File.

They contain the needed supporting Data Code. Objects and screens are configured as different object structures. Some are
Dynamic (RAM Variables) or Static (Code constants) and each has its supporting Pointers and data type structures. The
program template it creates provides areas for your applications User code, for Event Handler routines, (empty of executable
code), for screen objects that are active to touch. Routines for the devices HW initializations and what is called the V-TFT
Stack and Core code in the projects driver module file. These files will be in a format that corresponds to the Compiler
language selected in the projects options.

The Intentions for this manual and example project:

Since I intended for this to be a fun beginners guide and tutorial manual, the more advanced features and descriptions will
not be covered in this document. A future advanced topics document is planned, but I am waiting to see what
MikroElektronika will have in the official Visual-TFT Users Manual that is to be released, date unknown.

That is also why I decided to make this beginners tutorial, as a band-aid for everyone who needs it until something official is
released. If'you found the V-TFT Help File not helpful for every question that arises when you use V-TFT, this document
might address a few or more of those new user questions. I tried to remember of as many as I could that are important enough
to get you started on making V-TFT projects that won 't have conflicts with how the program template is intended to be used.

This tutorial is a guide to help you get started and make you aware of some dangers that can cause your project to not
function as intended. Where I stress the importance of doing something or not doing something in the projects code files, is
not absolute, but my suggestion that unless or until you are more advanced in skills enough to know how to avoid the dangers
associated with going against the suggestions, you should not, but keep in mind there are usually exceptions to the rules
implied and you may one day need to disregard them to have success with what you want to do in a V-TFT project.

It is easy to say “Keep an Open Mind”, but hard to do daily.

I also wanted to pass on some Tips and Tricks I have discovered myself or learned at some point in my life or found on the
forums. I will try to acknowledge who's Tip, Trick it is if not my own or of public domain source. I do not want to anger
anyone by any usage of any content in this document. If you think you should have credit or reason for anything to be
removed, contact me by email and I will discuss the matter with you.

If you want to submit any thing that would be helpful also or a good alternative to any procedures, please do and I'll do
updates to the document. Post on forum thread or comments at the Examples LibStock blog.

At the time of this writing, Visual-TFT's Version is 3.7.0. So the information in this documentation is subject to being out of
date or inaccurate at any time. I plan on updating it from time to time or if something important needs to be added or
removed or changed. There are some topics about V-TFT that I want to expand the coverage on so there will be updates as the
new material is completed. So check periodically if there is a new version of this document available.

http://www.libstock.com/
http://www.libstock.com/projects/view/808/new2v-tft-project-template-for-user-code-tutorial-and-example-event-counter
http://www.mikroe.com/visualtft/
http://www.mikroe.com/

Tips and Trigs

Visual TFT TIPS & TRICKS for success: (For Al skl Levels)
First, 3 rules you should know before, and while programming anything:
| call these RULES the 3 Laws¥ of Programming. ke e 3 aws of Robotics)

RULE #- NO program YOU write will EVER run and DO what you wanted it to DO,
it wil ALWAYS run and do EXACTLY what YOU told it +o DOl

RULE #2- If data is corrupted, it will stil run and do EXACTLY what it was told to DO,
it it can, but NOT what YOU told it +o DO.

RULE #3-* Just because a program compilcd without errors, it does not mean there

are ho errors or guaran+cc it wil execute as wanted - see RULE #i

* Aleksandar and I agreed during a discussion there needed to be a RULE #; to complete the LOGIC circle.
So learning how programmable digital systems actually operate to follow a programs instructions will be
one of the best tools you will use when writing your own programs. | did not make the rules, they are a
natural result and inherent to all programmable digital devices.

Bit Calculator:
Get the “BitCalc” tool that Aleksandar Vukelic made and can be downloaded at

http://www.libstock.com/projects/view/666/bitcalc if you do not already have it.

[B sitcalc vi02 [E=NEE
Size Decimal Hexadecimal Binary Char Shift Invert
) 8 bits A | -640433498| | D3 D3 CZ.B.Sl |11|:|11|:u:|1 11010011 11000010 1010011|:|| | | [s=a] |1 B =
~) 16 bits
;:;. 32b:t5 B | 1269559185” 4E=.-5.E=EF91| ||:|1|:u:|1|:|11 10101011 11104114 1|:u:|1|:u:u:|1| | | =] | 1 B [-
Sign | AND (T) OR @ XOR
=i SigrfEd c |—183?61?865| | a2 78 2|::-3?| |IDDIDDIDDIIIIDDDDDIDIIDIDDIlDllll| | [c>a | [c-=B] [ar]
~) Unsigned

Jl 30 29 28 2F¥ 25 25 24 23 Z2Z 21 20 19 18 17 15 15 14 13 1 11 10 = & L s e e]
A [N o SN o |0 SN (SN o [o o [ENEN ENEN o oo]lo B0 | o [Elo o |HEHEN o |
B [o [0 [[o [[EN[o [N FENo [WN[o [o |\ R] o [N SN0 o [N o o [E

C [0 Jlo [EH[o o |l | [o|HENENEN o o o] [o o [N o [EHENo Bl (oo 5SS o N5

Fl - Help | F2 - About P B:

e

It will aid you in learning about Bit Masking and using Bit operators in programming + much more!

I consider it an @ssential tool for programming and troubleshooting your code and analyzing others code to see how logical operations programmed
get the right results (0r wrong). It is a stand-alone application that can be added to your compilers External Tool's configuration so it is always at hand.

When designing in V-TFT, it is usually better to make the least complicated interface at first, then test it,
and if that works, then consider what to change to add more elaborate features,

Try to do the project in discreet small chunks of functions, checking the functionality of each as you go.

Use, Use, Use your compilers comment feature to give yourself guidelines and reasons why that code
is there, and what it is supposed to do — remember RULE #1?

You do not have to comment everything just like | did for this example project, but try to help your future
self with what you are doing now in your code.

Before jumping in and trying to make that multi-screen GUI you have been thinking about for a long time now, you should
do a very simple 1 screen test project from scratch to make sure you have selected the correct device HW configuration
gettinge that work and you can get the device to show the TP calibration (if equipped) screen and the first screen of the
V-TFT test project with at least 1 (active) Button on it, so you can test that the TP works at desired touch pressures and

can be accurately calibrated when pmﬁammed and gemd ﬁ to run the program.

http://www.libstock.com/projects/view/666/bitcalc
http://www.libstock.com/users/view/13895

Do not short yourself of what is available to aid you.

Take notice of how | named the V-TFT button objects in this example. By putting a Underscore “_" at the end of the name, the
“OnClick()’ V-TFT adds won't make the name so hard to read in the code. Change the names of your Objects before you assign
any events to them. V-TFT does not change the name of an Action Event routine name assigned to an Object when the Objects
name has been changed. You only need to do this to Objects that will have touch events assigned, it won't be needed for other
Objects as they don't get suffixes added to their names by V-TFT unless you assign an Event to it.

Even though V-TFT automatically assigns names to the Objects as they are added to a project, leaving the names as is will cause
you difficulty for keeping track of many Objects and their properties on different screens in large projects. | have developed this
naming convention that helps me out and maybe it will help you too, or give you ideas on doing your own version.

If a project has more than one (1) screen, | name every Object with the screen name it belongs to as the prefix to the name —
Screen1Box1 and a Screen2Button1_ Object will have Screen2Button1_OnClick() for its routine name, when assigned.

If an Object is used as a display of data or indicator, Its name should reflect its purpose - Screen1OnLight instead of Circlel ...
You will have to remember the Objects type so you use the correct V-TFT drawing routine for each Object, but you will find
writing your code easier to do and reading it will make more sense with descriptive names. You do not have to rename every
Object used in a project, but any that you have to refer to in your User Code should be renamed.

If you save the job of assigning events (creating event subroutines in event module), to the objects for last, and
you have more than one screen in your project, you can assign events one screen at a time

and the created routines will be grouped by screen together in the events file. If that confused you, do not worry,
you will understand it when you make your first project with more than one screen.

You should save the job of assigning Events to Objects for the last if possible.

If you can, do all of the graphical work of your screen(s) layout and components properties before you have time
invested in programming code for them. There is always a good chance that you will change the design at least
once before you get the design how you like or need it to be, in order to function. Test compiling and loading a
screen before doing the code work can save you from doing work that won't be used in the end project.

V-TFT object editing is a lot harder if there is also program code associated to the objects. Example: If you copy
an object that you have assigned a TP activity event to do when triggered, the copy will also have the same event
action assigned. You may or may not have wanted that to be. If you did, then no problems, but if you want a
different event routine to be assigned to the copied new object, you will probably end up deleting the original
objects event routine trying to clear the assignment from the copied object.

Only copy an object that already has an event action routine assigned to it, if you want the copy to use same
routine or there is already a event routine made you want it to use instead. Otherwise — using a new component
instead is easier and saves you trouble.

You cannot rely on the V-TFT “Undo button”s functionality to save you from project damage due to a software
bug. Keep a backup in a separate folder that you can update manually after a editing session is finished.

| have rarely gotten the results | expected from using it.

It may function correctly for normal editing mistakes, but if you are trying to reverse the results of a V-TFT software
bug, there is a good chance it will cause more damage to your project, up to and including TOTAL LOSS of
project being usable or loadable into V-TFT again.

It is easier to copy an object that has a lot of properties set like you want another one to have, than configure a
new one added from the component palette.

Bug in V-TFT ver. 3.7.0 - Grouped Objects. Having any group(s) of Objects in your V-TFT project when project is
saved or sent to compiler directly, when compiled and run on device after loading, will cause your application to
freeze up trying to draw the screen that has any Objects Grouped together. Make sure you UN-group all
Objects in your project IN V-TFT before trying to compile and run it on a device.

The keyboard “Ins” or “Insert’ key toggles between Insert and Overwrite modes in text (code) editors.

Not all Components have a “Static” property because they have properties whose values must change in order to
function as designed. Since they are “Dynamic”, you can take advantage of changing any of their properties to
achieve visual effects to help indicate a state or condition is in affect in your application instead of adding more
Objects to your project to do the same.

You can use Layers to group same object types together by layer or have all objects used to make a
custom display or control on its own layer so easier to move or hide on the screen

If you use any Objects to make a background for the screen, putting them all on a Layer by themselves makes it
easier to get the background back underneath all other objects should you need to.

Right-Click the background Layer in the “Layer Window”, select all Layers Objects,

Right-Click on a selected Object, select “Send to Back’.

When using many layers to separate and organize the objects on multiple screens, any time you change the
screen being displayed in the V-TFT screen edit window, the selected Layer for editing activity will be the last
Layer (Bottom of the Layer window list), not the one you were using last on that screen.

The Layer selected for a screen is not persistent.

Personal Project with EVE FT800
Breakout board. Multiple screen GUI
Controller for Electric Bicycle ESC.
Still a work-in-progress Project.
How many objects do you think are used
for this Speedometer gauge? Answer is at

= Evefrogressiar
the end of this manual. -
Layers o
) Show Ml Layers
Viskis Laper rame Los layer |
= BackGnd
- Soresn _Selactrs
- Specdomeier
- 20_MPH_Numbers
i 33_MPH_Nursbers.
ﬂ 50_MPH bl
E 20_MPE_hlusshers
- Didometer -
- Condroks -
= indates "
- Touch_lndcatory -
- Stasc_Text .
T Wik | B Dpior: Cashard [€5 User Code| ™ secionBexes

0

4 vls“al TFT Components & ObiieCts Tutorial: hg I-‘z'r::ber of different Objects used in a Project

as a Major impact on the Code File sizes. Use fewer

. Ypes to save RAM & ROM MEMORY.

First lets make sure we are on the same page about Components and Objects. You will see both terms used in this document
and in Visual-TFTs official documents (Help File), as referring to the same thing, and this is correct, mostly.

In the V-TFT program, they are listed in the Components Palette and divided into two groups — BASIC and COMMON.

I have come to think of it this way, and so I must let you know this so there is no confusion between us about term usage.

Component(s) — Term to apply to the different types of Objects available for you to use in your projects.
Components are usually made from multiple Objects.

Object(s) — Generic term a Component #ype is called once it has been placed into the project on any screen.
An Object is the simplest V-TFT element that you can use in a project.

IMPORTANT FACTS ABOUT COMPONENTS “STATIC” PROPERTY:

If the objects property is set to "Static = True" in V-TFT, you can not change any of its properties during run-time.

The property "Static" must be set to "False" for ANY objects you want to have their properties changed by code during run-time.

The Static property determines if the component will be coded in the output files as a structure of variables or of constants.

Static = True: Object is coded as Constants structure. NOT CHANGEABLE DURING RUN-TIME!

Static = False: Object is coded as Variables structure. IS CHANGEABLE DURING RUN-TIME!

This setting of the 'Static' property has to be done to the object(s) when you edit them in V-TFT so they are structured in the
output code as either dynamic (variables in RAM) or static (constants in program memory-ROM).

You can not change them afterwords in a compiler as the whole structure for the object must be coded by V-TFT based on the
setting of the Object(s) "Static" property. All code that handles the Objects structures (pointers) is set at build time in V-TFT
also, so the setting of this must be done in V-TFT before compiling is done. Once an Objects Static property is set to TRUE,
the Only operations that can be done with it is to redraw it and assign any Action Event TP trap to it. Events can be assigned
to Objects with the Static property set to either TRUE or FALSE.

NEW TOPIC

How to Display Changing Alphanumerical Data with Components:

(I apologize that this lesson was not in the original tutorial manual, as it is a very important one for new V-TFT users)

The V-TFT help file implies that users only have the LABEL component to use for displaying changing alphanumerical
characters. This is incorrect. ANY component that has a “Caption” property is capable of displaying changing data, as long
as its “Static” property is set to '"FALSE' (see above about the Static property). In my experience, using a Label for doing this is
the hardest way to do so. Here is a short lesson on using the Label component to show changing data and the alternatives.

Using the Label Component to show changing alphanumerical Data on a Screen:

The Label object requires that you first erase the old data on the screen by changing the font color to that of the background
color and redrawing the exact same data in the background color (and at the exact same location), then putting the new data in to
the Labels Caption property and change the font color again to a different color than the background color and then redraw
the Label to show the new data. Important — There is another component property that must be set correctly when using
ANY object to display changing alphanumerical data; The 'Max Length' property! This properties value must be set to the
maximum number of characters that you will be placing into the Caption property of the object. The default value of zero
(0) is to be only used if the contents of the Caption property will NOT be changing during run-time. A zero value means that
V-TFT will automatically set the correct value (in the output code) based on the number of characters the Caption property
contains at project build or save and usually reserved for Labels that are Static in nature.

There is another way to erase the old data without the steps stated above; you can have the Label /ayered over a Box object
and redraw it to erase the old data before drawing the Label after its Caption property is loaded with the new data.

As you can see, using the Label component to display changing information on the screen is not straight-forward and easy.
And there is no justification that can be applied to the contents (left, right , center). Labels are fixed with left justification.
Labels do have uses though. They are great for writing alphanumerical characters that are Static and need never change.

The Alternatives:
The alternatives are to use one of the other components that also have a Caption property like the Buttons. The advantages?

Buttons automatically erase the old displayed data as they write the new data. (less user code instructions needed)

Buttons do not require you to change the font colors, but you can if you want to. (again less user code instructions needed)
Buttons have a justification property you can set as you want or change during run-time. (again, less user code to implement)
Buttons have a size adjustable boarder of selectable color and width you can use to emphasize the captions content. (the
equivalent of a Label drawn inside of a Box object, but a lot less user code to implement)

The downside to using a Button as a Label:

There will always* be an area around the Caption contents that gets drawn also. This can be a problem for you based on how
you have your layout designed, but changing the layout design can overcome this most of the time.

The Button must be dynamic (Static = FALSE) so having many buttons doing labels function eats up RAM memory fast.
(you can use Static Buttons for displaying non changing data still)

You can set the properties of a Button so that it does not appear to be a Button also. Setting the Pen Width Property to zero
(0) will make it so there is no boarder and setting the gradient property to False and the solid color to match the
background achieves this. *But if you set the Transparent property to True (so background shows thru), you will have the
same problems with erasing o/d data as you have with using the Label component.

All Caption properties are expecting the information assigned to it to be in the String data type format with a Null character
(0) terminating the String. There is no automatic conversions done to the data. You must have the data already in the proper
type format (String) before trying to assign it to the Caption property. This is not a problem if only using alphabetical
characters.

They are already of the String data type. But when you need to display numerical data with a components caption, you have
to do the conversion to String data type first (exception is the EVE Numbers component).

The Conversions Library in your compiler has the functions needed to do this for every numerical data type supported by the
compiler. Be aware though, the result from the conversion will be Right justified in the target String with leading spaces
padding the string if the number of characters in conversion is less than the declared target string variables length.

The “Max Length” property of the components Caption property is its declared character length.

Another Library has a function that can strip the spaces from the front (left) of a number-to-string conversion that is less in
length than the target strings declared length if you need to have the spaces removed so your display looks like you wanted.
The Library is the String Library, and the function is: ltrim(string variable) (left trim).

If you want more information and Code examples about this Topic, I made another Tutorial about it and it can be gotten at
Libstock site also. That V-TFT example project does not have a PDF manual like this one with it though. All explanations are
done as comments in the mBASIC Pro for PIC32 Source Code Files — Main and Events_Code project files. This is why [
have not included code examples in this tutorial, / had already made them.

Click HERE to open the Examples page at Libstock.com.

“Is“al TH Making your own Components:

I feel some talk about this is required. There has been requests for some additional components to be added to V-TFT and the ability to
create custom components that become part of the components palette. While having some new components added to V-TFT would be
nice, | think users are not taking full advantage of what can be done with what it has now. This is the main reason I made the example
project that would be the reference for this tutorial. The Event Counter display-Gadget is an example of how to make a custom
component using the available objects in V-TFT. By demonstrating how the Display-Gadget was made, you will also get a lesson about
Layers and layering Objects. When you think about it, it is the purpose of V-TFT to give you the tools to make as intricate an interface as
you want. If you use this concept, you can start building up a “library” of reusable gadgets you make or be able to use any that others put
up to share fireely. The Display-Gadget is the first one available, from hopefully, a growing list of them soon.

Here is the concept:

A custom gadget, like any built-in V-TFT components, requires two parts in order to work, 1* are the graphical elements to make it a
visual construct (of objects) and 2" is the code to be executed that provides the functionality of the gadget. This seems simple enough
right? So,,, lets build one (a fictional one for now). Here are the steps to take —

1 — Make the custom component from the Objects available on a screen by itself.

2 — Make the routine(s) and declarations needed to support its functionality,
in “Event Handlers” and/or “User Code” and/or “ User code declarations”.

3 — Export the screen so it can be imported in to other projects.

4 — Load the “V-TFT Project” for the Gadget in to your compiler.

5 —Add a blank Module file to the project and place all routines in the new module file below “implements”, and any
declarations for variables and constants above “implements”.

6 — Make entries of “Forwards” for the routine(s) that need to be seen external to this module above the variables and

constants declarations. The modules name should indicate what “Gadget” it provides support for.

The objects used to make your “Gadget” that need to be manipulated by code should have unique names that can help indicate
what functionality they are there for, so calling on them from the main project body will be easier to understand.

There will be more effort to get a better way to implement something like this functionality integrated into V-TFT.

For now will have to wait and see if the software development department at MikroElektronika will use some ideas submitted
on having the feature added and to what extent they go with the concept. The biggest problem now with doing this is the way
V-TFT will rename the Objects on the imported screen when bringing a Gadget into a project. If you try this, you will see
what [mean and the problems it causes. I am pushing to have this fixed for a future release of V-TFT.

Did you know? That Components are just

a lot of TFT Library drawing functions that V-TFT
generated code uses to make the Objects. They
are pure data constructs that V-TFT driver code
makes into components from predetermined code
Templates for each Component.

http://www.mikroe.com/
http://www.libstock.com/
http://www.libstock.com/projects/view/714/my-button-as-a-label-method-examples-demo

“Is“al TH Layers and Layering Objects: ‘—
p N

A few words about Layers in V-TFT needs to be said before we continue on.

Layers are only a organization tool for users to use to help with the tasks of editing Objects and doing your design.

They do not have any effect on the display order or visibility of objects in the final output.

Layers in V-TFT have no code structure or existence in the output code. They are to use only in aiding you while editing in
V-TFT. A lot of users have voiced opinions that it would be nice if they were a part of the output framework and could be
controlled by user code to have a form of control over the objects on a Layer as a whole. Maybe it would be nice, but for now
it is only a wish request and layers cease to have any function outside of V-TFT.

This does not mean they are useless or cannot provide you with assistance in making your design.

Here are some examples of Layers and their purpose for possible usage practices for organizing a V-TFT project:
(You can rename a Layer by double clicking on its name in the Layers Window)

[Example Layers] [Description of usage]
[Background] All objects that make up a screens inactive background graphics
[Section Boxes] For placing Box objects that define the borders of areas by function.
[Static Labels] For placing all label objects that will not change their properties.
[Dynamic Labels] For placing all label objects that will have their properties or caption change.
[Controls] For placing TP input objects
[Indicators] For placing any objects that function as a condition indicator or Change appearance.
[Control name] For placing all of the objects that are used to make a custom TP input.
[Display name] For placing all of the objects that are used to make a custom output.
[For Hiding] For any object(s) that your code controls the visibility but you need to not
be seen while you continue editing in V-TFT.

There are more uses the Layers can be used for, and you will find the ones that are most helpful to you as you go.
Each Project may be different in how you use them if at all, based on the complexity of the design you are working on.

See the BONUS CONTENT Section in this manual for access to real hands-on V-TFT Screens you can examine (and use
the Objects from it if you want) examples of the Layers Usages described above.

Q =
Authors note on additional examples for using Labels:

If you want more and better examples of displaying changing data on a screen
with V-IF7, you can check out my other tutorial example N-IF9 project for
using “Buttons as Labels method” that is also available @ Libstock site. Tt shows
bow to use Labels in different ways and how to erase old data before showing the
new data and how to do the same with the Button Components. You can compare

h way to belp you find the best way to get your project working like you want.

visual TF

Object Layering in V-TFT: —

™.

While the Layers in V-TFT do not have any effect on the output code, how you layer Objects in V-TFT has great impact on
the output and how the TFT display will be drawn. The drawing priority for the objects on a screen is first determined by the
order they are placed on the screen. Objects placed first are drawn first and Objects placed last get drawn last by the
drawscreen() routine in the driver file. The drawing priority can be changed for any object by right-Clicking it and picking
one of the two options to move it to front or back. Many objects can be stacked (Layered) over one another to create a visual
display you want. Depending on the display controller you are using and the device MCU and architecture, having many
objects /ayered on the screen may or may not look good in actual practice for any given device. It will depend on how you
have them stacked and which one(s) need to be redrawn to perform its desired function. My best advice is for you to play
around with some objects stacked (layered) over each other and see what happens when they are redrawn in different orders.
For most display controllers, any area on a screen shows the last thing drawn there and what used to be there can be lost (not
visible), until told to redraw it again. For many applications, this is not a problem. For some, it will be due to how the designer
wants to manipulate the display. If you change an Objects property that affects it visually, it won 't actually happen until you
redraw the Object using the proper object drawing routine (see the section about Driver file drawing routine list also).

One way to see how things will look when different objects are displayed or not, is to put the objects you want to test how they
appear when stacked (layered) over each other on separate Layers and use the visibility control to make different objects
visible or not to see the results. This can help you set up the proper front to back ordering so the application will give the
results you wanted.

! The number of Layers added to a Screen has no effect on the projects build for run file size. The number of different
components and number of different Fonts used are the biggest factors of a V-TFT projects final file size.

See the V-TFT Help file for more information on Layers and the controls available if you need more than this to work
with.

TIPS for usage: If you are making a custom input or output gadget that uses multiple objects stacked over one another and
will be copying it to make others, DO NOT have the objects on different layers. Place all of the objects on a single layer.
It is easier to start and build a gadget on one layer than to move the objects to a layer after starting to build it.

If you redraw an object that has other objects over it, they will not be visible any more and will require being redrawn also, if
your design needs them to be visible too. The general rule is that you will need to redraw all objects “forward” (to front), of
any object that you have your code redraw, if they are affected visibly by the rear-most object you had the program redraw.
The V-TFT core code does not keep track of what has been redrawn by user code so the users must do this themselves.

For most display controllers, the TFT display is like a school chalk board, in that whatever is drawn last erases what was there
before. But unlike a chalk board, you can redraw an object that lies underneath other objects drawn over it and have it now
made visible, until other objects get drawn over it. This is the basis for layering objects on a screen. The Layers tool in
V-TFT has nothing to do with this architecture of what is drawn on the display, unless you organize the objects to match the
layering in the Layers you have made in V-TFT. You have the freedom to organize the objects and Layers this way or not.
Just remember that the Layers cease to exists outside of V-TFT (for the time being) and the objects priority is the factor that
determines which object is drawn over other objects when doing a DrawScreen() function.

An objects draw priority value is set in V-TFT and changing this with user code is not supported by current design.

Most of an Objects properties settings in V-TFT have a direct affect to how the Object will initially appear on the screen
when the project is compiled and run on a device, so set your objects properties in V-TFT to the settings you want them to
exhibit when the application is actually run on a device. If an Object is not Static, you can pre-load property values from
user code before it is actually displayed or change them at any time afterwords from user code to achieve the desired visual

eiects. " Any object that has another one layered over it still gets completely drawn before the one over it gets drawn. V-TFT does not sort out if

ABOUT EVE FT800 PROJECT OBJECTS:

The EVE FT800 display controller based devices are an exception to the rules stated above. Its methodology for displaying
a screens objects is handled differently. With the EVE, a user makes a change to an objects property or properties that affect
its appearance with user code and then issues a complete screen redraw command to have the change(s) manifest on the TFT.
The EVE redraws the whole screen following a LIST of drawing commands whose place in the List determines which
objects are shown in front of others. With the EVE, the priority assigned to an Object actually determines its place in the
List of drawing commands. But the EVE has the ability to move the commands around in this list also.

This ability is equivalent to changing an Objects drawing priority value, which is not supported during run-time with the
other display controllers supported by V-TFT.

In truth, the EVE controller would need a whole book dedicated to its features and functions, so 7 am not going to go any
further into its capabilities here, just this information to let you readers know that there are differences with the EVE display
controllers and the original display controllers that V-TFT was originally made to work with.

The Objects and Layers used in the Tutorial Example:

The following screen captures show the objects on a layer all selected so their editing outlines are all visible to you.
The Counter Layer has all of the objects used to make the digit wheel display-Gadget.

EVE NT CO U N TE R This Gadget is made from 3 different component types: 1x Box , 2x line and

7x Button objects for a total of 10 Objects.

Each digit is displayed by one Button object. The picture below shows the
common “same value” properties they have.

Screent - 1 S
) 1 EVENT COUNTER
roperties 1 [(rounded Box
Name Screent - 1 1] y 1 Ocirde
Start Srraan 7 tria s +
i \\Line
Compenents = 1
i = [—
5 T Label
© Same operties a_.’, FFlooron
[Lett A
Top 25 3 (F)rounded Button
Width 13 i CT)C et
eiaht) = Alphanumeric charactes —
Caption 0 (= Himage
Text Alignment taCenter 3
o Longth T — — Set flor Single Character [Pchedoon
= Font -
Font Name Tahoma 3 7] @ ® (®)Radio Button
Font Size 10 al wIProgressBar
Font Color clwhite
Start Char 32 IE
End Char 127 o
Fart Style BruUs mil = Blazderle Felgtutrgs and Controls Expansion Bay -
Pen Width 0 @ TS Layers 7=
Pen Color dBlack] Remove Panel Screws to Access o 4 |1 showAlLayers
X';T: d :::E] visble Layer name Lock layer
Transparent false | =n B lo = CONIRCES .
3 sradient 1 _| - Ot Black shading colors I
Enabled | true _;// TEXT
Orientation Top to Bottom -: I - FUTURE FEATURES
Start Color S004F4F4F ull B ® ® », s
End Color $00151515 N
Color clBlack
Press Color $00EZ2E... Disabled m
Fress urze d Screent ocecupied objects
ot Welcome | (B Display: Screen1 | €& User Code |

7 objects selected _Screenl _Ci\..\dspica3epmmb_v370_event_counter_example vift Total abjects on screen: 28

It requires only one routine in the “User Code” area to provide its functionality. To change the numbers displayed, the routine
“Event_Counter()” is called after the variable COUNTER_VALUE has been assigned the value to be displayed.

There is another routine, “Reset_Counter()”, that manipulates the Gadget also, but it is not required for the Gadget to be
functional. It just does a fancy zeroing of the display by setting the wheel-digits values to “0” one at a time. Setting the
COUNTER_VALUE variable to 0 before it is called will also work. The fancy manipulations could be integrated into the
Event_Counter() routine if desired.

The Text Layer has the projects Label Objects on it.

- 8
RO Tip: Any time you select more than one (1)

bject in the screen editing area, the Component
roperties viewing window will change to show only

he Properties that have the same settings or values.
‘Ou can use this to make adjustments to those

common’ properties on multiple Objects all at once
instead of selecting each Object one at a time to do

0. Selecting multiple Objects with the Mouse is done
asily while holding down the “Shift” keyboard key

nd then left-clicking on an Object in the screen

diting area to add or remove it from the Objects
elected. The Components Properties window will
indicate the total number of Objects selected also. J

Features and Controls Expansion Bay
Remove Panel Screws to Access

The Future Features Layer has all of the objects used to make the lower half of the screens expansion bay panel graphics
(see image above at left). The Controls Layer has all of the Objects that make up the three (3) TP input controls. If you have
the example project in V-TFT and right-click the Controls Layer and click “Select all Layer Objects”, you will see that there
is actually four (4) Objects that make up the three (3) input controls. The “Hidden” Object is a Circle Component Behind
the “RESET” CircleButton that is inactive (and also set Static as it does not need any of its properties changeable during run-time),
and colored in RED and MAROON Gradient fill colors. Normally it is not even visible, until the RESET Button is clicked
on, then the user-code changes the Transparent property of the RESET CircleButton to TRUE (0) (Yes a zero is considered as
True for the Transparent property of all components, that have it, the Help File is incorrect and a One (1) is actually considered a False
setting, the working running code proves this!), so the center of it after redrawing the Red Circle and the RESET Button (in that
order) 1s now red instead of the normal White-Silver Gradient colors. The user-code flips the setting of the Transparent
property back and forth in a timed manner to achieve the visual blinking effect. (see the example code listings for how this was
done)

E- .
- Press again to RESET count or Press Minus button to cancel. lhi@ The last Layer is the layer for the message Label
© ® Opmonem that becomes visible after the RESET button

" ProgressBar

£ has been clicked once.

E Features and Controls Expansion Bay = i

Remove Panel Screws to Access o W |9 showalLarers

Visble Layer name Locklayer |
CONTROLS

COUNTER

=

FUTURE FEATURES

| 'EREN

This section will cover moving objects from
one Layer to another Layer and how it will
effect your project.

At some point in time, you will need to move
an object from the /ayer it is on to another
layer. Sometimes when placing Objects on
your screen, the Object ends up on the
wrong Layer or you find you need to move
an Object to another Layer to make it easier
to edit the layout of your screens design. You
might find it harder than you thought because
there is still a minor bug in V-TFT regarding
the Layers. I'll show you the bug and how to
get the results you want in this section with
these step-by-step instructions.

Moving Objects on the Layers Tutorial: =

W
Jel

oldGul

lllustration 1: Object and Layers

For example, the selected Label “oldGUILabel2” is on the wrong Layer — CONTROLS
(#1), and we want it on the 3™ Layer — TEXT(#2). (see #1 & #2 in the Illustration 1 above)

(see Illustration 2 at left)
If the Object is at the front, Right-Click on it (#I) and select

“Cut” (#2), or if the Object is hidden behind another object- use

Undo (Ctrl + Z)
Redo [(Ctrl + %)

Copy (Ctrl + C)
)| Paste (Ctrl + V)

the tool bars “Cut” button (#3).

Hlustration 2: Cutting options

J!
i Jio o

Ilustration 3: Object Cut and available options after.

~ i |'_ Show All Layers

Visible Layer name

GUI Screws
Hllustration 4.: The Layer selection Bug

Lock layer

o i |'_ShowAlILayers

DMNTRO
COUNTER

TEXT

FUTURE FEATURES
Message

Hllustration 5: Correcting Layers selection.

Layers
Show All Layers (Illustration 6) — Now left-click the desired Layer again (#I), and
you should see that only one Layer is selected, and the originally

Visible Layer name Lock layer Tocted L - ”
23 CONTROLS selected Layer 1s not (#2).

. COUNTER
1 L
“EA

FUTLURE FEATURES

. Message

Hllustration 6: The Layer desired is now selected

Screen editing window

A quick side note:
I want to establish a Terminology
for a User Action in V-TFT -
Visible Layer name Lock layer The “Clear-Click”.
= Eullit S A Clear-Click action is when you place
- COUNTER the mouse pointer anywhere in the
= TEXT Screen Editing Window that is not
example 'Cleaz-Click' location = FUTURE FEATURES over the screen being edited and
“l Message then Click left mouse button
-—-—""‘). = GUI Screws so nothing is selected but
the screen edit window.
See image at left

Layers

Show All Layers

current screen

current Layer

The “Clear-Click” use of the mouse can be used a lot in V-TFT to make sure nothing is selected and have an effect on the out-
come of a editing operation. (¢ is usually best to Clear-Right-Click in the area that is not part of the current screen you are working
on when doing a “Paste” operation. If you right-Click in the screen editing area, there is a good chance the Layer selection will get
changed to the Layer the Object you clicked over is on. Where the mouse pointer is at has no effect on where an Object gets pasted. If
it was Copied, the new object usually appears low-right of original or some always appear directly over the original Object. A Cut
Object should appear at original location. For either operation, the pasted Object should be shown as selected afterwords. The Clear-

Right-Click method helps to ensure you get the results you want.)

Now left-click in the screen editing window at a good P - S -
“Clear-Click” location (#1), so the Layer highlight ed’s e Fe— e
name letters go to Black color (#2) like shown in = CONTROLS
Hllustration 7 at right. (or whatever color you have your ® — ioﬂ“:”m D) 5|
V-TFT IDE set at for not selected) @ L—_\ s

e Message

Lv DUt

Ilustration 7: Clear-Click to set Layer
selection.

Select All

(Ilustration 8) — Now Right-Clear-Click in a “Clear-Click” location (#1)
and select “Paste” (#2) from the menu to put the Label (or Object you are
moving), on the Layer you wanted, as shown in image to left.

Align and Distribute »

Byers

Lock lay

1 J—
o = FUTURE FEATURES
@I o Message =
I s Or you can use the Tool bar Paste Button o) —
Hllustration 8: Pasting the also. (Illustration 9 - #3 at right)
Object to a Layer (Or Keyboard [Ctri]+[V]) llustration 9:
Paste
Object Inspector b E)D\sp\ay oldaUL _ T - - - o ‘cDmr nnnnn s palette. by
il %) EVENT COUNTER | Ver 123(QDf == If everything went right, you should
18 N 0000000 Qo see the Object back on your screen and in
B T the exact X/Y location it was at when you
(13 99 o .
oo § RESET Cut’ it (#1), and the name is correct and it
= e (the Object) 1s on the correct Layer now (#2)
—___ © — like shown in Illustration 10 at left.
o %) \@
. Tahoma I Features and Controls Expansion Bay
For o szsw 1 for Future Usage of E-Bay1 Kits when available.
= I N
Hlustration 10: Object has been moved to new layer.

Any Object(s) you move will be Top or Front Most after being pasted now, no matter where it was in the Object layering
(Priority) list before being moved. If it has not happened to you yet, at some point while working in V-TFT, you will be
moving Objects around the Layers or putting copies of some Objects on a screen and you will find that the draw order
(Priority) is wrong with the Objects now and you will find you need to be clever about how you get them sorted so they are all
being displayed correctly. | had some cases where | wasn't sure | would get the Layering mess sorted out right without
surrendering to frustration and deleting the problem Object(s) and making new ones from scratch, because | could not
see a workable solution to get things right. (actually did resort to deleting and using new components, but that was with a
very buggy V-TFT version. It has not happened for some time now | am happy to say)

Because there can be so many possible conditions with multiple Objects on multiple Layers and I can't realistically cover
them all, I had the Idea to make available a collection of V-TFT screen exports from a complex personal project I have been
working on. I have changed the target hardware from MMB for PIC32 to the Connect EVE FT800 Breakout board so had
Idea to let the community have those MMB screens as Object Layering on multiple Layers examples to aid those who want
more examples on this topic. The project they came from was for a custom Electric Bicycle Brushed DC Motor PWM
Electronic Speed Controller (ESC) and Graphic System Management TP GUI. I think there is 9 or 10 screens in the collection.
(more than shown in the image below)

 esc adc. bmp[l 1] (Background) EI@ § esc_mhz_splash.bmp [1:1] (Background) EI-@ b esc_system.bmp [1:1] (Background) EI-@ b esc_xtras.bmp [1:1] (Background) EI@
|‘ | AL RRRE RRR] TR R d....

2

|0||\‘\|||||||||||||..||||

kiiad PwM ADC XTRAS PANEL STATS[sys PWH

SYSTEM SECURITY G-FORCES [EEM
MODE | PASSKEY @ @ @

Eml o000 o5 0 oo]

SYSTEM SETTINGS

svs_pwm_ '! XTRAS PANEL MEGAHURTS ESC DASHBOARD

T
e @ @ @ '@
Y I
CALIBRATE [T ‘ HI ‘

E-BIKE MANAGEMENT SYSTEM

00:00:00

ADVANCED GRAPHIC TP INTERFACE

E MODEL: MED-P3200 SW VERSION: 1.1.0
X [A]

These controls

Adj how fast the [S— -

ESC responds to 50 l S ' 5 ' 4
large changesin =) —
Throttle Inputs.

CONTINUE

55 _setup.bmp [1:1] (Background) EI@ L esc_pwm.bmp [1:1] (Background) EI@ ; esc_panel.bmp [1:1] (Background) EI@ 5 esc_setup2.bmp [1:1] (Background) EI@
e 4 +

o [Brttenctnettnerlbrunttttonctond B ttonstteettond Bt tonsttondEectton |[Brctincftanati

SYS fu i@l ADC XTRAS PANEL STATS
PWM CHANNEL AND BASE FREQ SELECTION

D e - D
CH = PERIOD = m RES BITS = n

PROGRAMABLE PWM MIN/MAX DUTY RATIO LIMITS
TO ADJUST LIMITS
L MIN - L MAX g
ENTER DU PEN e s <DHORUP> ._.
ENTER NEW PIN (o]0 QN1 S O | NEW PASSKEY # OR U

THEN PRESS — ——(—

i [P e e e Tl B v oo ot v

Escrup exce: (RN () (X)

E| SPEEDOMETER WHEEL SIZE CALIBRATION

E|SET CIRCUMFERENCE
H|SPEED SENSOR ON IT
0 0 0 0

E/IN Cm., THEN ENTER.

| . 0
e[JC

E TO PD
> E
—

FUTURE OPTIONS

CHANGE PIN [I
BUTTONIFITIS

SHOWN BELOW O 0 0 0 0 0
(I | | 7

Click on image to download the Collection from Libstock.

All screens and controls and indicators are made from V-TFT Objects only. No BMP's or direct draw TFT instruction codes
used. Lots of custom made input controls using different methods and custom indicators for data output using different
methods too. All designs are my own that I worked out while I was learning how to use V-TFT and Bug test it for
MikroElectronika. My work on these screens has led to many changes and improvements that are now a part of the V-TFT
you are using and how it now takes /ess work to make screens like these. So I feel they are of some value as tutorial examples
and you should consider taking a look at them.

Sorry, but you won't get any program code* with them though, just the Objects on each screen as I have them organized on
the Layers and how they are layered and all of their properties settings 1 used to make them as they are. If you want to
examine them, download the zip package from this tutorials Libstock page and un-zip the download. It makes a folder with
the screen files (.scr) and a bmp image of same name for each screen to preview it. Start a new project in V-TFT and then
import any screen you want to examine or copy any Objects from to your own project(s) and use. You can change any objects
properties as you want. *(the ESC code is still in development and may become a commercial product, so I have to keep it secure for now)

http://www.libstock.com/projects/download/808/1918/1384723988_new2v_tft_projec_other_other.zip

visual TFT

The MAIN Loop and Multitasking in V-TFT Flowcharts

These Flowcharts show the program execution flow after the Main Loop in the main program file ha
Task and a double Task Framework with no TP activity and a 2 Task with TP activity ptogram flow.
Single Task No TP Activity Detected flow chart 2 Task No TP Activity Detected Flow Chart

Project "Main" Project "Main"
Program File Program File

entered for a single

£ b whieTe | Erlsctiorer
+ | While True A —Smm =
T : Check_TP()
ask 1 .
T 1 Project "Driver" Check_TP() ¢N0 Activity
Program File - end sub
Check TP() ——> =
- Tack 2 Project "Event_Code"
A Your_Task() _ SIofEsi Hes
No Activity Your_Task()
g@@i@@d@

*_Wend j__ end sub Wend |
These two flowchart diagrams show the basic program execution flow for the initial V-TFT project that is not modified by
user code for adding an additional task in the main loop (left chart), and program flow for adding a “User Task’ code routine
(right chart). Both also show the program flow without any TP activity happening. Once a V-TFT project program execution
reaches the main loop and executes the call to the “Check TP()” routine, the call MUST be able to be completed, otherwise
the TP will not respond when user tries to use screen controls. The call to any routine requires some information be placed on
a 'Stack’ for later restorations for Returning from call and also cleared from the Stack. So not letting a call to a routine be
completed reduces the amount of stack memory other calls and operations have available to use. Not properly managing the
Stack is a easy error for programs to experience, as the devices have a very limited amount of Stack memory to start with.

end sub

Not all programming errors that can cause Stack overflow errors can be caught by the compilers during a projects compiling.
These are called “run-time” errors, since they are only apparent when a program is run. This information is to let you know
about the first possible error condition your “User Code” program logic can cause if not coded correctly. If you override the
V-TFT main routine call, by using your own routines or your routines call it from within a TP object event-action handling
routine, possible stack overflow issues arise.

This flowchart shows a simplified example of
the main loop pass with Touch Panel usage
detected. The user code for the Obj. event

2 Task TP Activity Event Handler with User Code

FlowChart p.ver Flle Event Code flle

Main Loop Check_TP()
While True

Task 1
Check_TP()

LIP Detected
TP Location

TP Object?

Obj. visuals

Event determine

User Code end sub

|Button1_OnClick() i

User Code area

Do_This() =
User Code

end sub —»

Event Handlers

Button1_OnClick()

User Code
end sub

handler routine has a task done by another
User Code routine also. Depending on the MCU
being used, the number of routine calls you can
‘nest’ in the first one, (Check_TP()) from the
“main” may be too much of a restriction for
your design to work. All routines must complete
their invocation to clear off the 'stack’ markers
to prevent overflow errors.

Check the number of levels deep your

project gets in your compilers 'Statistics’

Function Tree tool after a successful compile.

any user code is added to see what is a normal

ack — You can see the nesting of routine calls with
T z ":#%E'{"F E-'Isj;s?‘rf)a that tool to spot badly placed calls nesting. You
Your_Task() UserCode should examine a new projects structure before

end sub

Wend structure. This Flowchart best illustrates how
Event Code file this tutorials example project is coded to run.
Maln File
Main File Driver Elle Event_code Flle These Flowcharts show the basic's of the V-TFT project
> While True Check_TP() Event Handlers Template Framework and flow structure. These are not
ChIQ{sTKI-"l()) TP event the only way a user can configure the flow structure. But
= endsub N 0nEventg no mater how you configure your design and the tasks
User Code Area) v your code does, it needs to provide the equivalent of the
IQ&'@’,;’}QM&EE Event_code Flle program flow demonstrated in these Flowcharts shown
case 1 User Code Area here.
gg:g% ;QZE:S MultiTask manager for 8 Tasks ~ If any part of your “User Coa’l’e” breaks the c}'lain of the
gg:g g I::I_T asi-g | 1 V-TFT Task + 1of 7 User Tasks requ}req V—TET (.?heck_ TP” execution pass's, your
gy TASKS for 2 total executed per |00p cyc|e application will fail to wgrk or freeze: Program code'
case 7 JL("M # sas textiordetads must be capable of allowing this continuously repeating
end select €—¢ I::I|= TASK-7 execution of routines of Both V-TFT and User Code to
jend dLa-a_ D/AGRAM—4, cycle without the code preventing the exiting of any

routines in the loop.

There can be many Tasks in the main loop that execute one after the next and/or you can have Task selecting
management code to call Tasks only if criteria is met. The V-TFT Template does provide a powerful and flexible
Framework for users to create applications with, if the framework is used in a proper way.

The Tutorial V-TFT example application provided has a slightly different flowchart than any show above, But it follows the
rules and requirements of the Template framework still. This framework description is just a way to introduce you to the
concepts that V-TFT employes and give you a solid knowledge base from which to work with.

Keep it in mind and you should have no problems making your project ideas work if you build from this template concept.

*1(The task manager code can either increment thru the Task numbers itself so only one of the 7 User tasks plus the Check TP() task gets executed per cycle of the main loop in order set by
select case coding. Or the Task variable that tracks which is scheduled gets modified in “User Code” routine code or user code in event handler routines or by code in each User Task routine
code for smart task scheduling based on each tasks actions done.)

[= W,

Project Files “User Code” Template areas:
Where they are an{ema%s in mikroBASIC Pro.

Over View:

Visual-TFTs output is code that is organized by Templates V-TFT is programmed to follow. What code is generated
is determined by what Objects there are in a Project. Each object's related code structures are a Template,

even the related code to instruct the display controller how to draw an object. Once there has been an object
used in a project, the Template of all code needed to handle that object type is included in the output.

Most of the code generated by V-TFT goes into the files; projectname_driver , projectname_objects and
projectname_resources. These files are regenerated in V-TFT every time the project is saved or built and all code
is first erased then built up by V-TFT placing the required templates of code needed for the elements a user has
made their project with. So those files are not considered “safe” for User Code. The framework that V-TFT molds
the templates of code to has designated areas for users to place their code that completes the architecture of the
application and makes it functional.

For Visual-TFT versions 3.7.0 and older there are 2 files in the V-TFT projects template that are files a User

can place their own “User Code” in that can be done with little worry it will get overwritten. They are always
made by V-TFT for any supported hardware and in the compiler language selected for the project.

There is another place users can place code safely also - their own module(s) files. This Tutorial does not cover
the usage of “Users Modules”.

Project Events_Code File: @

The first one is the V-TFT projects "Events_Code’ file. This is a 'Program Module' file for the project.

This file provides User Code areas to declare Variables and Constants and to place your subroutines

and sub functions that can be called from your code in any objects Event Handler routine created.

As the files name says, this file is the one V-TFT uses to place an objects assigned “Event Action” routine(s).
The order the Event routines appear in the file is determined by the order you assigned Events to your
Objects in V-TFT. These assignments MUST be done in V-TFT so all Template code and pointer assignments
are set correctly in the output code in the Driver file.

This version of the tutorial manual has BONUS Code variations that are optimized and make use
of the counters objects structures pointers for better manipulations of their caption properties done by
Aleksandar Vukelic.

You can compare the two ways the same thing gets done and get some insight into the workings of V-TFT.

Here is what a new blank V-TFT projects “events_code” file looks like before you add any components to
the projects screen.

module sample_blank_vtft code_events_code Projects module File name.

Linking other modules to this project.

These areas that are light-Red in color are places you cannot place your code.
If you place any code in these areas, you will cause the V-TFT program to lose track
of where your “User Code” should be, and usually ends with your project not working.

This area is new with V-TFT Ver. 3.7.0 and not documented. Any code [have tried
placing here (not a external declaration) got erased when project build was done.

In these areas, Do Not Modify the
OFF LIMITS AREA: Comment Lines V-TFT makes or
your Code might get erased!
¥

1% User Code area available in a V-TFT projects “event_code” file.
This is where the variables and constants you will be using in your project
get 'declared’. (See actual Example Code for example usage)

OFF LIMITS AREA:

- Start of YOUR 2™ 'Safe Code Area' for your Applications Routines.

You need to organize your projects tasks so they can be encapsulated inside
of your “User Code” subroutines and this area is where many of them are going
to reside.

OFF LIMITS AREA

-This starts the area that V-TFT places code templates to declare
the Routines assigned to any objects Event-Action and where you will put your code to
perform the task(s) you want to be done for the Event triggered.

Event Routine Template
sub procedure ObjectName_OnAction()
[your User Code for Event task here]
end sub

The space between the last “end sub” and the “end.” file termination
Label is subject to being overwritten by templates of any new Objects
Event-Action handling routine. Only comment lines should be placed here until editing in V-TFT is done.

end.

Project Main File:
\l
The second one is the "MAIN program file every compiler project needs. While this file is required,

it contains only 2 V-TFT routine calls, Start_TP() is a one-time-only call before the endless loop and

Check_TP() gets called every pass of the loop. The rest of the file is empty of code and only has

some V-TFT made comments about the project at top of file. Even though there are no V-TFT comments

indicating any User Code areas, this whole file can be considered as usable for “User Code”,

if used correctly as the V-TFT project template expects. This example projects comments will show you

the organization of the template.

Warning! This file will be completely overwritten anytime you change the Hardware Profile to use in the projects Options.
This issue applies to Visual-TFT Version 3.7.0. and may get changed in a later version.

Here is a sample of a blank projects “Main” program file listing as it
would look to anyone, no matter almost the language programmed in.

' V-TFT generated comments about the project and hardware it was

"intended to run on.

' program name declaration.

' Symbol declarations would go here

' Variable declarations would go here

' Constants declarations would go here

' Sub Procedures declarations would go here

' Sub Function declarations would go here

" Interrupt Service Routine(s) (ISR) would go here.

' Label: main program starts here

' User code can go here: Gets executed one-time-only.

"* Required V-TFT routine call to do HW Initializations, calibrate the Touch Panel....
' User code can go here: not in the main loop (yet). Gets executed one-time-only.

' Start of the “main loop”: ALL code after here gets executed repeatedly.

' User code can go here: IN the main loop, so gets executed repeatedly.

' The heart pulse of a V-TFT project: this calls the routine once every loop pass.
' User code can go here: IN the main loop, so gets executed repeatedly.

' End of the main loop: program flow repeats at “while TRUE” statement line.

" Nothing here. Just empty space

" End of the program file

Project File Areas by the COLOR's

To help make clear the different parts and areas of the Project Template code ge
The User Code areas and the V-TFT code areas backgrounds will be differently co
These project code files listings have a coloring scheme of the background colors as follows:

V-TFT Generated Program Code Colors Key

The User Code Colors Key

The Example User Code Program Code

JEvent Counter Program Main File code Listing

http://www.libstock.com/users/view/13895

program pic32mmb_v370_example_tutorial_main

main:

V-TFT core code in Driver Module
to initialize HW and SW V-TFT
Objects, Resources and Screens.

COUNTER_VALUE = 0

RESET_FLAG =0 Start of .
BLINK. TIMER =0 Program execution

flow during run-time.

Routine Call:
Start_TP() in

Start_TP() 'Generated call to initialize HW and V-TFT screen(s) and objects. g"‘_’ie“s
river

Module

This gets called
One (1) time
Only on power-
up. Return
From sub
Routine:
end sub

while TRUE

REPEATING TASK
Routine Call:
Check_TP()

in Projects
Driver Module

Return from
Check_TP()
sub Routine:
end sub

Represents Driver Module Code
and possibly User Event Handler
Code in Events Code Module
before returning back to this Main
Program Module Code.

Routine Call:
Reset_Counter()
in the Projects
events_code
File- User Code.
Repeating Task.

RESET_FLAG
>0 YES
NO

if (RESET_FLAG > 0) then

Reset_Counter()
end if

Return from
Reset_Counter()
subroutine Call
Out: end sub

Event Counter Program Events_Code File code listing

sub procedure Event_Counter()

dim TEMP_STRING as string[10]
SHRT_STR as string[1]

if (COUNTER_VALUE > 9999999) then
COUNTER_VALUE =0
end if

LongWordToStrWithZeros(COUNTER_VALUE, TEMP_STRING)

SHRT_STR[1] = 0

SHRT_STR[0] = TEMP_STRING[9]
Button_One_Caption = SHRT_STR
DrawButton(@Button_One)

| coded this so it would
be a clear example of
manipulating string
elements and not inside
optimized indexing code.

SHRT_STR[0] = TEMP_STRING[8]
Button_Ten_Caption = SHRT_STR
DrawButton(@Button_Ten)

SHRT_STR[0] = TEMP_STRING|[7]
Button_Hundred_Caption = SHRT_STR
DrawButton(@Button_Hundred)

SHRT_STR[0] = TEMP_STRING[6]
Button_Thousand_Caption = SHRT_STR
DrawButton(@Button_Thousand)

SHRT_STR[0] = TEMP_STRING[5]
Button_TenThousand_Caption = SHRT_STR
DrawButton(@Button_TenThousand)

SHRT_STR[0] = TEMP_STRING[4]
Button_HundredThousand_Caption = SHRT_STR
DrawButton(@Button_HundredThousand)

SHRT_STR[0] = TEMP_STRING|3]
Button_Million_Caption = SHRT_STR
DrawButton(@Button_Million)

end sub

sub procedure Reset_Counter()

if (RESET_FLAG = 1) then
if (BLINK_TIMER < BLINK) then
inc(BLINK_TIMER)
else
BLINK_TIMER =0
if (CircleButton_RESET _.Transparent = 1) then
CircleButton_RESET _.Transparent = 0
DrawCCircle(@Circle2)
else
CircleButton_RESET _.Transparent = 1
end if
DrawCircleButton(@CircleButton_RESET_)
end if
end if

if (RESET_FLAG = 2) then
COUNTER_VALUE =0
Delay_ms(1000)

Button_One_Caption ="0" . .

DrawButton(@%umnﬁne) Replace with this code:
Button_Ten_Caption ="0"

Delay_ms(100) fori=0to 6
DrawButton(@Button_Ten) strepy(digits[i]*.Caption, "0")
Button_Hundred_Caption ="0" DrawButton(digits[i])
Delay_ms(100)

DrawButton(@Button_Hundred) ne)]()teilay_ms(l()())

Button_Thousand_Caption ="Q"
Delay_ms(100)
DrawButton(@Button_Thousand)
Button_TenThousand_Caption ="0"
Delay_ms(100)
DrawButton(@Button_TenThousand)
Button_HundredThousand_Caption = "0"
Delay_ms(100)
DrawButton(@Button_HundredThousand)
Button_Million_Caption ="Q"
Delay_ms(100)
DrawButton(@Button_Million)
RESET_FLAG = bFALSE

BLINK_TIMER = bFALSE
CircleButton_RESET_.Transparent = 1
Delay_ms(600)
DrawScreen(Screenl1ScreenlD)

end if

end sub

Do Not Modify this
comment or put
any code above it
and below the
comment line above!

From this point on down, V-TFT
places Objects Event Handler
Routine Code Templates.
User must write Task Code.

Comment lines that start
with a minus (-) are my end
of Routine markers.

Comment lines that start
with a plus (+) are my
Start of Routine markers.

This Object event handling
routine is dual purpose, 1% it
checks if a RESET confirmation
is in effect and cancels it if it
is, 2" it subtracts 1 from the
counter if not canceling the
RESET test.

The last Object Event Handler
Routine this project has.
Only three (3) Buttons to

code for. Only tutorial
Comments are after here
to end of file.

Driver Module file Breakdown of Important Areas for Users:

Overview of the Driver Module file.

Welcome to the New coverage of an important part of any V-TFT project, the Driver Module File.
The Driver Module is, as its Name implies: The Force behind any V-TFT (or V-GLCD) application it creates, with your help of course.

The Driver Module is so critical to a project, it is devoid of any User Code areas like what is available in the Events Code Module and
Projects Main File. Any change to any object or its properties causes V-TFT to rewrite the ENTIRE Driver file!

So anything you do to the code in it has a very short life if the project is loaded back into V-TFT. This is just a part of how V-TFT is
designed. The Driver file has to have a lot of changes made, based on your screen(s) design(s) and use of the components.

While there are no designated “User Code” areas, there are areas that you can place your code into in V-TFT that does end up in this
file in special places that correspond to the code entry dialog windows in V-TFTs Project Options menu dialog.

They are the only place and way you can have your code in the Driver file (for current version 3.7.0. , This limitation may change later).

Trying to edit those areas outside of V-TFT will get erased once the project is loaded back into V-TFT. So only do the editing using
V-TFTs code/dialggs. See the V-TFT Help File for more information and usage instructions on those Code entry Dialogs. They are not
the focus of this t@pic. But that information I gave is required for new users to have so you won't have any surprises or spend time doing
work. I will show you where in the Driver file those blocks of User Custom routine code ends up, but that is where
iscussion about them.

I will end any more

If you want to explore doing changes to the Driver file, read the forum threads about others trying to do so. Nobody will say it is easy.
Most report of not having any successful results, so play in this file at your own Risk. To prevent any code loss if you do, make copies of
the code you add or change in the Driver file in a separate file from the projects files. It can be a plain text file or a blank module file.
Then you can copy your custom code from it back into the Driver file if V-TFT overwrites it.

The focus of this section about the Driver file will be showing you the areas that will be helpful to you when you write your own projects
code. Since we cannot safely write any code in the Driver file, that leaves us the option of reading it, correct? And where to read is what
I will show you in this section of the tutorial. These places in the Driver file contain useful information for you that can help you do your
coding in the User Code areas of the main and events_code files.

The Driver file has all of the routines needed to make a component do its function. It also has the routines to handle TP activity and
determines if activity involves any objects and if so calls the objects event-action assigned handling routine which is your code for
what tasks to do on that activity. It also has the routines for device HW initializations. Each component used in a project will have all of
the routines and code needed to make it work added to the other objects used routines and code and this becomes the V-TFT core code.

A component is not a feature of the TFT display controllers (exception is EVE controller). They are constructs made using standard TFT
Library drawing functions defined by each ones properties data structures that the Driver file object drawing routines use to create them
on the TFT screen. (a side note: Screens in V-TFT are just groupings of objects data for each screen.) Knowing where these object data
structures are in the Driver file can help you when you are using Dynamic Objects (Static = False) and you want to manipulate their
properties. When making your own projects, knowing the right object drawing routine to call for each object you used is also important.

The 2 following section topics will show you those places in the Driver file where you can look up information that you can copy and
paste to your User code or find the routine(s) name(s) you need to use for drawing or redrawing any of your projects objects.

DRIVER FILE

Object Drawing Routines to Use List.

Whenever you add a component to your project, V-TFT adds the routines needed to draw that object, for whatever state it is
in, Static or Dynamic. You can find out what drawing routine(s) are available by looking in the Driver File near the top of the
file. It should be the 4™ listed group from the top.

1** entry is the modules name.
2™ entry is the project includes of other files to link in project.

4™ entry is the forwards declarations for all routines the driver file currently has that need to be visible to the project.
This list is where you will find any and all drawing routines for your objects in your project. This list will change
according to objects used and their Static Property setting. See the sample listing below for an example.

These draw Button routines are for the
same component type, but one is for
drawing Dynamic Buttons (top one),

and the other is for Static Buttons (bottom).

Static routines will have a “C” in its

identifier name, for Constant.

module dspic33epmmb_v370 event counter example driver

include dspic33epmmb_v370 event counter example objects
include dspic33epmmb_v370 event counter example resources

' External Declarations

sub procedure ButtonRound MINUS OnClick() external
sub procedure ButtonRound PLUS OnClick() external
sub procedure CircleButton RESET OnClick() external

Here i¢ atrick Tuce : Icopy all of the forwards
from here to the event_code file and make
Vi them comments. Then I don't have to keep

sub procedure DrawScreen(dim aScreenID as word) going to the driver file to see or copy to use in
sub procedure Process TP_Press(dim X as word, dim Y as word) my code (I copy the first part to (' and fill in
sub procedure Check TP() the rest. IE. DrawButton(@Button _One)

sub procedure Start TP() ["] for the I* time usage and copy the completed
sub procedure DrawButton(dim Abutton as “Tbutton) code for pasting then on). You can set an area
sub procedure DrawCButton(dim Abutton as “TCButton) in the user code space for putting in comments,
sub procedure DrawRoundButton(dim Around_button as ~Tbutton Round) any used often long code chains, and mark the
sub procedure DrawCRoundBptton(d1m Around_button as “"TCButton_Round) area with active comment or a dummy

sub procedure DrawCLabel(dim ALabel as “TCLabel)

sub procedure DrawCCircle(dim ACircle as “"TCCircle)

sub procedure DrawCircleButton(dim ACircle button as “TcircleButton)
sub procedure DrawCBox(dim ABox as “TCBox)

sub procedure DrawCLine(dim Aline as “TCLine)

i

permissible identifier for that area <o you can
quickly jump there to get a copy of something
you don't want to type in. Only works in

a compiler or equivalent code

editor.

DRIVER FILE

Dynamic Objects Properties Declarations.

Since 'Static' objects are read only, there is not much to be said about them, except you should remember that the only
V-TFT operations you can perform on them is to draw them or redraw them and assign a TP event action. You can make it
seem like a static object has disappeared from the screen by drawing another static or dynamic object over it. Of course a
static object has to be layered in the right position behind it to work as you cannot move a static object during run-time.

The 'Dynamic' objects are where you will spend the time coding to make them do more than just sit on the screen, never
] to help you get the work is important

All Dynamic objects properties are initialized in the Driver file routine InitializeObjects(), called from the routine Start TP()
(see image 1), that gets called from the Main program file at start up. Every property of a dynamic object (except Static) that
can be changed by your code during run-time is group listed by object name in the InitializeObjects() routine. As you will see
or have seen, MikroElectronika's programmers did a great job with the code template layout V-TFT makes (see image 2).

. .
image 1 image 2
I Letbutton - . . - 57| T2 Code Explorer (=] |D dspic33epmmb_y370_event_counter_example_criver.mbas [E35 ||| dspic33epmmb_v370_event_counter_exam
2103 /00 rocedure Start \
([GetCBox 5 ES P _TB() A - dim CurrentMyScreen as TMyScreen
(¥ GetCButton 0 Init MCU() 8 Symbos A - iplenents - Start of routines in driver file.
. wn BT -
[# GetCCircle = i z GT:;:\S
) . . 2
[GetCircleButton . InitializeTouchPanel () “ |5 Functions .
[GetCLabel E 9 Calibrate 750 sub procedure Init ADC() [
K @ Check_TP E sub procedure InitializeTouchPanel() & static -]
() GetCline . Delay ms(1000) & DrawButton [is
G EeCRoundButton | TFT Fill Sereen(0) g grawggox L g@@mﬁ wg@iﬂg
i i e rawCButton ;
- Bsub procedurs Caliprare) [Should be Dymamnic
[GetRoundButton 3110 Calibrate () £ DrawCCircle i
G Irit ADC i g @ DrawCircleButton I /
- i et KR e) G DrawCLabel — -
5 Irit_MCU ! @ DranLine 757l Bub procedure Initializeobiects() I I 5:5:1:]
Initialize0 bijects TR , 3 DrawCRoundButton
g IritiglizeT : FPanel i InitializeObjects() @ DrawRoundButton
nitialize T ouchPane . . . 00 Button Million.OwnerScreenID = 3276
) . di=splay width = Screenl.Width 9 DrawSereen ! 1 e S -
(@ lsinsideObject i i T 9 Get_Object ; i s
-] display height = Screenl.Height 3 GelButlon 3 - Button Million.Left_ = gy
(9 Procsss_TP_Down DrawScr;eﬂ""G’] (9 GetBos i - Button Million.Top - 25
ni3Z /et N e A e o
i@ Process_TP_Press (# GelCBullan ° Button Million.Width = 13
b end sub @ GetCicle E Button Million.Height = 24
6 Process_TP_Up \.) (@ GetCicleButton . Button Million.Pen_Width =0
(@ SetCurenttyScreenBylr (@ GetClabel . Button Million.Pen Color = 0x0000
G Start TP - b end. (# GefCline - Button Million.Visible =1
= . — (3 GetCRoundButton - Button Million.Active =
(3 GetRoundButton 810 Button Million.Transparent =1
@ Ini_pDC . Button Million.Caption = @Butcton Million Caption
L3 it MCU - Button Million Caption =F=n=
m . Button Million.TextAlign = _taCenter
g :'I"'"ZI'ZDEhTD':ChPa"EI . Button Million.FontName = @Tahomal2x16 Regular
@ ans‘ ° T‘SCD Button Million.PressColEnabled =0
e = Button Million.Font_Coloxr = OxEFFEF
@ Process_TFP_Fress a i '
@ Frosess_ TP Up Button Million.Gradient =z
@ SetCurre_ntM;ScreenEylr Button Million.Gradient_Orientation = 0
@ St TP = . Button Million.Gradient_Start_Color = Ox4A68

There is an oops with the comment they have V-TFT put by the routines name though, it should be 'Dynamic' not 'Static'.
(4 Projects Static objects properties declarations are found above the Modules implements statement.)

All of the dynamic objects used in your project will have their properties listed here. You should not change the first two (2)
objects structure values though. They are not normal object properties and are used by the V-TFT core code only. Changing
either of them without knowing what you are doing will cause problems with your program running right.

The 1* one is used to indicate the screen that the object belongs to. (IE. Button Million.OwnerScreenlD = 32768)
The 2" one is the objects drawing Order priority for the DrawScreen() routine(s). (IE. Button Million.Order = 2)

The rest of the objects property variables and pointers you can see and, Copy the ones you are going to use in your projects
User Code routines to change an objects position, size, color(s), visibility, transparency, active or other properties as you need.

Use the same trick of Copying the properties (variables names or pointers names) you plan on affecting with code over to the
Events_Code file and Paste them as comments in the routines that will be using them so you can Copy and reuse when you
need the property variable in code.

This way you will get the names correct and avoid syntax and declarations errors.

You can learn a lot by studying the driver file too. There are some cool codes and methodologies being used in those V-TFT
core code routines. If you do not know much about structures, pointers, and complex nesting of conditional tests, if you try
to figure out what is going on in this module, you can learn a lot by its example. But it is pretty complex stuff.

Not all of the comments that it does have are helpful or in a few places, wrong. Some of the comments are helpful though but
there is not enough of them. There are a few routines I have trouble understanding as to what is being done because it has
complex nested logic testing and/or references being done without any comments to illuminate its function.

When I'm working on a project, I check this routine before leaving V-TFT to work on it in the compiler to make sure the
objects I wanted to be Dynamic are listed and the objects I wanted to be Static are not in the listing here (they should be in the
declarations area above the “implements” statement).

There is no harm in exploring the files in a V-TFT project, so look all you want, but remember that editing the driver file or
the others that do not have “User Code” areas is not recommended unless you know how to do it without causing problems.
There are a few threads on the V-TFT forum about different ways to get around some of the /imits that V-TFTs project
structure imposes and a very good topic by forum member “aCkO” on how to reuse objects on different screens instead of the
way V-TFT has you make a Copy of or make new ones for each screen.

He has also made a number of utilities for the community in various categories for MikroElectronika product users, including
V-TFT. The last thing to show (maybe it should have been the first) is a comparison of an objects properties in V-TFT and how

it gets put into the driver file code.

The image at below left shows all of the properties for the tutorials RESET CircleButton component. The CircleButton
Component properties structure variables names are shown to the right of its location in the picture of the component

properties explorer window.

Components

Cceuton RET © The Current Object on the Current Screen Selected.
|

Properties | Events

See text below in Yellow section about this property.

Name CircleButton_RES... =«
Left 135 F
Top 56
Radius 24
Caption RESET
Text Alignment taCenter
Max Length 0
o Font L
Font Name Tahoma
Font Size 10
Font Color clBlack
Start Char 3z
End Char 127 =8
Font Style BIUS
Pen Width 2
Pen Calor clGray
Visible Y true
Active v true
Transparent [false
= Gradient E
Enabled Y true
Orientation Top to Baottom
Start Color clWhite
End Color clSilver
Color clSilver
Presz Color clGray Enabled
Static [false i

CircleButton RESET .Left
CircleButton RESET .Top
CircleButton RESET .Radius
CircleButton RESET .TextAlign

See text below in Yellow section about this property.

CircleButton RESET .Font Color

CircleButton RESET .Pen Width (in pixels, zero is a valid setting too)
CircleButton RESET .Pen Color

CircleButton RESET .Visible (I=True, 0=False)
CircleButton RESET .Active (I=True , 0=False)

CircleButton RESET .Gradient (I=True, 0=False)
CircleButton RESET .Gradient Orientation
CircleButton RESET .Gradient Start Color
CircleButton RESET .Gradient End Color
CircleButton RESET .Color

See text below in Yellow section about this property.

And here is the complete listing of the RESET CircleButton's Properties that are initialized in the InitializeObjects() routine:

CircleButton_RESET_.OwnerScreenlD
CircleButton_RESET _.Order

=32768
=34

Do Not Modify with your code!

CircleButton_RESET_.Left_
CircleButton_RESET_.Top
CircleButton_RESET_.Radius
CircleButton_RESET_.Pen_Width
CircleButton_RESET_.Pen_Color
CircleButton_RESET _.Visible
CircleButton_RESET _.Active

=135
=56

=23

=2

= 0x8410
=1

=1

CircleButton_RESET _.TextAlign

= taCenter

CircleButton_RESET_.Font_Color
CircleButton_RESET _.Gradient
CircleButton_RESET_.Gradient_Orientation = 0
CircleButton_RESET_.Gradient_Start_Color = OxFFFF
CircleButton_RESET_.Gradient_End_Color = 0xC618

CircleButton_RESET _.PressColEnabled

=1
= 0x0000
=1

CircleButton_RESET _.Color = 0xC618

CircleButton_RESET_.Press_Color =0x8410

CircleButton_RESET_.OnUpPtr =0 1* See text below in Tan section about these Properties.
CircleButton_RESET_.OnDownPtr =0

CircleButton_RESET_.OnClickPtr
CircleButton_RESET_.OnPressPtr

= @CircleButton_RESET_OnClick
=0

As you can see, things are not exactly the same between the code and V-TFT
interface. Each has some things the other does not

Dont worry, the reasons why they do not match is not a
locked secret with no key to the reasons why there are ﬁ
some differences between the V-TFT IDE interface and

the V-TFT generated code that represents the users

settings of an Objects properties in the V-TFT IDE “

The following text sections are colored as said above so easier to locate the
material that belongs to that properties explanations.

Yellow section:
The properties marked above with yellow are settings that are used by V-TFT only and are not available for users to
change with run-time code. The first one is the Components Name, so it is used in the name of all of the properties also.
You cannot rename (or re-declare) a variable with run-time code.

The next one is the value V-TFT will use to set the length of the Objects Caption String variable declaration. Again, not
one that can be changed anytime during execution of the program. If the Object is Static, leave ‘Max Length' at zero (0).

The last one is the all-important Object Static setting. It can only be set while in V-TFT so the Objects data structure is
coded either as Constants or Variables. So there is no coded property variable or constant for Static. Its setting is held in
the V-TFT projects file.

Orange section:
The Caption properties, of all objects that have a Caption, have two properties that look alike but are different. One is
a pointer to the other one. You can code to use the pointer to place new string data into the actual Caption string
variable or you can code to use the Caption string variable directly. The V-TFT Help file shows the direct-to-variable as
example and no mention of the pointer holder.

You just need to make sure you are using the one you choose to use correctly. This is another good reason to actually
Copy the property variables name (identifier) to make sure spelling is correct and using the one you intended, because
their spellings are so close to the same.

Tan section: 1*
These properties are the ones that hold the pointers to the Action-Events you can assign to most Objects, including the
Screen itself. In V-TFT you can either Double-Click on an Action to create a new Event Handler routine or choose one
from any that have already been made for other objects. Every new Event-Action routine made is added to the list of
routines that can be assigned to an object.

Since these Event routine pointers are part of the objects dynamic properties, we can change the assignments

with our code during run-time if we want to! This can be a very useful option to use for certain circumstances.
If you have a very complex Event Handler routine that has to check for many conditions and do a lot of tasks based on the
conditions, you might end up having a routine that exceeds the 2000 byte length limitation any single routine may have
for certain MCU families (see your compiler manual for details on page limits for routines to see if your MCU has this limitation).
You can break the routine up into separate smaller routines and have your code change the Event-Routine pointer to
point to different routines you have made based on condition testing. Remember, your User Code routines and Event
Handler routines are both considered “Implements” in the project events_code module, so place the alternative
routines in the “User Code” area. Forward declarations for the other routines will also need to be made at the top of
the module in the area “User code declarations” that | shown is to be used by Users for doing this (see the topic section in
this manual “Project Files “User Code” Template areas” for more information).

You can use this trick for a lot of reasons. If you think it will be easier to change the routine that gets called for the
objects TP activity in certain circumstances, then you can do so, as long as the object is Dynamic and not Static.

Since this concept is not covered in the V-TFT Help file and something | recently realized could be done, there is not
any other documentation | can point you to that offers more help if you need it. Maybe there will be some discussions in
the V-TFT forum once this concept trick gets being used by some other users. | might add a code example for doing this
in the future, but right now | do not have one | can share.

The project | was working on when | made this realization and am using it in is not something | can put out for the public.
The Example project this manual covers did not need to use it because it is such a simple program.

But | decided that it is a too important piece of information to not add it to this manual for you to know about.

If there are dangers or reasons to not use this trick (other than the obvious ones), | have not discovered them yet.
(mainly, don’t forget when and where you pointed the objects Event-Action Handler to.)

If I do find one that is not an obvious one, | will post about it in this Tutorial projects thread and add it to this manuals
next update version. If you try it and find one, please let us or me know so it can be made known to all users.

That's it for this section. | think that if you explore the Driver file and become somewhat familiar with its design and
contents, you could find other useful ways to exploit what it has to make your work on a project easier.
| hope you found these new sections coverage of the Driver file helpful to your working with Visual-TFT.

D =4

Additional Community Submitted Tutorial Code Examples, Tips & Tricks & Project Expansions:
If you really want to give thanks, consider this:
I welcome any submissions anyone would like to have me post on libstock of additions or features to this
Tutorial example project. It can be as simple as a project conversion to other compilers or device Hardware.
I will add it to the Libstock page with your credits. Submissions should have some form of information or
description of what and why the differences or the concept it demonstrates if not a conversion to other HW/SW.
This document would also get updated to list submissions and include documentation if included.

Forum and active community member Aleksandar (aka aCkQO) helped me a bunch on this project and
contributed the alternate optimized code for the routines in the “User Code” area. I had intentionally wrote the
code very simplified and not using loops to do repeated tasks so readers would easily understand the examples
about accessing directly the String variables elements that the mikroBasic help file lacked. That is why I did not
just replace my code with his and just showed his as side notes where it would replace my original code.

I thank Aleksandar for his contribution greatly as I did not think to include an example of the normal looping
code practice to do the same also, until he submitted his version. I think it made for a very good coverage of using
string elements and the object caption property this way. I hope you agree too.

JNEAR PEER

2014

Wot 50 [ong, long a Time ago, ina ga&zxy
. Not'tgo Far, Far Away, MegaFurts had on
. /izs YTFT workscreen, a update and add-on.

' RE. g Kit for the empty, Expanswn Bdy.
With a'strong cup of coffee’in hand andthe,

opticalmouse in the other, using the force)
that the coffee stipplied made the night in’ .
" to day'so the 'worlé,(p" the jedi masters -
would not be defeated by the tﬂm{am{ =

g powerful m[empire tfiat. wanted to
Hestroy everything the Jedi fiad®
- $94.:] 4/<el {>ie sytemegz re. *

(Dies1-rEG EVENT COUNTER Ver. 2.2.1 (=

B OO - - |

E-BAY1 R EG Module Installed and Ready to Use

[Gt)0 200)[200) 20)2 -
| EXLTE RNG

‘ Additional Credits and Mentionsg

Aleksandar- For his always valuable help he provided and provides to the whole community.
And for working with me to make sure the coding is correct and does not violate
MCU programming principles. The alternative codes in the program files are his
examples of using variable pointers and making use of the pointers already present
in the structures of V-TFT Objects. His contributions to this effort will help many
improve their skill levels, it certainly has helped mine.

Marko for all of the personal help, and correspondences and awesome attitude. Many thanks for all of

his hard work on the software (more than two or three I'm sure) we use and working with me on solving

some V-TFT issues and taking my suggestions to heart. Always looking forward to working with him
again, even if it's about a bug.

Filip and the rest of the MikroElectronika staff. Some of the nicest people on the planet and very thankful they are
making more and more development tools that make it easy to embed our ideas. One of the best support
infrastructures there is and a model for others to follow. Sure to have 30,000+ forum members in 2014. :)
(Congratulations by the way!)

Dany — for his many contributions and hosting of this tutorial V-TFT project at his site also. If you use PICs, check his site
out at http://www.rosseeld.be/DRO/PIC/index.htm He keeps a large 'Vault' of goodies there for PIC enthusiasts.

Janni for all the answers he has given to me and many others and the many useful Libraries and the list goes on.......

All you guys who answered MY questions 1 had along the way, many thanks for making the Forums what it is.

You users who have given the courtesy thanks and feedback, RLINERMUE O ERENTEROTMEETIQT.

To all you forum members that make the effort to help others, | applaud your nature and actions
and as a small way to give thanks and honor your legacy, I dedicate this manual to you and
make it a Present for any who hopefully find it useful. Merry Christmas from Idaho, USA.
'BACK TO TABLE OF CONTENTS
\

The “About the Author” pdf is not required reading. But if you have a sense of
humor and adventure, you will find everything you (didn'y) want to know about

\ me in the stories, somewhere, maybe.

I hope you feel you got something valuable from this and it serves you well,
Robert. (MegaHurts) B*)

%) Visual TFT [eehtts

Answer : For the image shown, @ 30 MPH setting - Objects = 12. But the total Objects for it is 34. Not all are ever
shown at any time. There are Four (4) different speed ranges the Gauge can be set to : 20 mph, 30 mph, 40 mph

and 50 mph. So there are 4 different EVE Number sets, only one showing at a time. There is also 2 EVEGauge
Components used to make the speedometer, but only one is showing its tick marks.

http://www.rosseeld.be/DRO/PIC/index.htm

	~ MHz Beginners+ Tutorial Projects ~ Files: The User Code program templates

