Getting Started with Nuvoton 8-bit
Microcontrollers — N76E003

Many of us who are involved in the embedded system industry like 8-bit microcontrollers. They are
cheap, easy to use and solve most of the common automation problems. 32-bit micros are in that
contrast expensive and are mainly intended for advance-level works that cannot be solved with 8-bit
micros. Thus, 32-bit micros are not much demanding as the 8-bit ones. In most places, 8051s, AVRs
and PICs are the most used 8-bit micros. The popular Arduino platform is mainly based on 8-bit AVR
micros. However, these are not the only 8-bit micros of the whole embedded world. Nuvoton - a
Taiwan-based semiconductor manufacturer, is one such company that has its own flavour of 8-bit and
32-bit micros. The 8-bit micros from Nuvoton are based on the popular 8051 architectures. In this
series of articles, we will be discovering Nuvoton N76E003 1T-8051-based microcontroller.

Nu-Link-Me V3.0 iy -

L]

o WY o

o]

g

(e

N/6E003 vs STM&S003
Memory Timer [PWM | Analog Interface
AFROM 18 KB 16-bit Timerx 4 12 e AT 8
1T 8051 R : -
ata Flash Self Wake-up
Processor \) Timer l PWM |
SRAM 1 KB Watchdog Timers
s hy)
\h—_J - .-'"'I - 7 - -
|
Power Control Clock Control GPIO Connectivity
| Geanearal
Lo i 16 MHz HS RC Oscillator ~ Purpose IO ; UART X 2
Power-on ¥ i
Resal Reset Pin SPI
Brown-out LS RC Oscillator 10 kHz External
) PC
Detection Interrupt

http://www.nuvoton.com/

In terms of outlook, part numbering, pin layout and other basic features, N76E003 looks like a cheap
Chinese copy of STMicroelectronics’ STM8S003. However, as we all know, looks can be deceptive.
Though several similarities, N76E003 is not a replica of STM8S003 in any way. In fact, in terms of
architecture and some hardware features, N76EQ03 varies a lot from STM8S003. For instance, the
processor core of these chips is not same. Even after having same pin layouts, N76E003 has several
additional hardware than STM8S003, for instance 8 channel - 12-bit ADC.

UART1_CK/TIM2_CH1/BEEP/(HS)PD4 T 1 ¢ 20 3 PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR
UART1_TX/AIN5/(HS) PD5]2 19 1 PD2(HS)AIN3/[TIM2_CH3]
UART1_RX/AING/(HS) PD6 3 18 3 PD1(HS)/SWIM

NRST [4 17 (3 PCT7(HS)/SPI_MISO [TIM1_CH2]
OSCIN/PA1 [5 16 T3 PC6(HS)/SPI_MOSI [TIM1_CH1
STM8S003F3 (HSVSPLMOSI [Tivn_CH1]
OSCOUT/PA2 16 15 1 PC5 (HS)/SPI_SCK [TIM2_CH1]
Vss 7 14 1 PCA(HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N]
VCAP 8 13 3 PC3(HS)/TIM1_CH3 [TLI] [TIM1_CH1N]
VDD o9 12 [PB4(T)/I2C_SCL [ADC_ETR]
[SPI_NSS] TIM2_CH3/(HS) PA3 10 11 3 PB5(T)/12C_SDA [TIM1_BKIN]
/
PWM2/ICETO/AIN4/POS [| 1 20 [] P0.4/AINSISTADCIPWM3/IC3
TXD/AIN3PO6 [| 2 19 || P0.3/PWMS/ICS5/AING
RXD/AINZ/PO7 [] 3 18 || P0.2ICPCK/OCDCK/RXD_1/[SCL]
RST/P20 [| 4 17 [] PO.1/PWM4/ICAIMISO

wn

INTO/OSCIN/AINT/P3.0 [_| 16 || PO.O/PWM3/IC3/MOSITT
N76E003AT20

15 [| P1.0/PWM2/IC2/SPCLK

@

INTT/AINO/P1T [

GND [| 7 14 [] P1.1/PWM1IC1/AINT/CLO
[SDAJTXD_1/ICPDA/OCDDAP1.6 [| 8 13] P1.2/PWMOACO
vDD [8 12] P1.3/SCL/STADC]

V] 1

PWMS/ICT/SSIP15 [] | | P1.4/SDAFBIPWM1

The table below summarizes an actual comparison of these chips.

Features N76E002 STMES003
Operating Voltage 2.40- 5.50V 2.95-5.50V
Flash 18kB BkB
SRAM 1kB 1kB
EEPROM Shared with Flash up to 4kB 1288
GPIO 17 + 1 Input Only 16
ADC 8 Channel 12-bit, 400kHz 5 Channel 10-bit, 428kHz
Timers 3 x 16-bit + 1 x 16-bit (for PWM) 1 x 8-bit, 2 x 16-bit
PWM 6 Channel 16-bit 3 x Complementary +4 Independent
SP| 1 Channel 8Mbit/s 1 Channel 8Mbit/s
12C 1 Channel 400kHz 1 Channel 400kHz
UART 2 Channel 1 Channel
HIRC 16MHz (2% -40 - 105°C) 16MHz [1.5% -25 - 85°C)
LIRC 10kHz 128kHz
Idle Current Consumption < SpA BLLA
Programming Interface 2 Wire 1 Wire
Package TSSOP20/QFN20 TSSOP20/UFQFPN20/LQFP32

Itis a goodidea to consider N76E003 as an advanced 8051 micro in STM8S003 form-factor and having
several similarities with the STM8S003.

Hardware Tools

To get started only two things are needed — a prototyping/development board and a programmer
called NuLink. There are two options either you can buy the expensive official NuTiny SDK boards with
built-in NULink programmer/debugger or you can buy the cheap unofficial ones as shown below.

=

- —
= 1
= —
= -
- e
= —
- e
= —

-
-

% 4
g :!

:
-
g.&%

My personal choice is the unofficial one.
Software Tools

Despite Nuvoton being a giant in manufacturing some of the industry’s coolest chips, it greatly lags in
terms of software tools. Unlike other manufacturers like STMicroelectronics and Microchip, Nuvoton
doesn’t have a free C compiler of its own. To use Nuvoton 8-bit micros, we have to use either Keil
Micro Vision or IAR Embedded Workbench. Both industry-standard tools but are not free. However,
there are trial and evaluation versions of these tools.

IAR Embedded > |KEIL
Workbench® Tools by ARM
M4 pVision®5
Integrated Development Environment
@ IAR KEIL is a trademark and pVision is a registered trademark of ARM Ltd All rights reserved.
SYST EM S This product is protected by US and international laws.

The next stuffs that we will be needing are device datasheet, drivers, GUI for NuLink and sample codes
with Nuvoton’s official header and source files. These are available here.

http://www.keil.com/
http://www.keil.com/
https://www.iar.com/iar-embedded-workbench/
http://www.nuvoton.com/hq/products/microcontrollers/8bit-8051-mcus/low-pin-count-8051-series/n76e003/?__locale=en

We will also be needing a pin map because there are few pins in N76E003 and they have multiple
functions.

N76E003 Pin Map _ N —
PWM2/IC6/TO/AIN4/PO.5 1 20 P0.4/AIN5/STADC/PWM3/IC3
TXD/AIN3/PO.6 2 19 PO.3/PWM5/IC5/AING
= GPIO ————
. RXD/AIN2/P0.7 3 18 P0.2/ICPCK/OCDCK/RXD_1/[SCL]
ADC Trigger RST/P2.0 4 17 PO.1/PWM4/IC4/MISO
= pwM _ —
_ INTO/OSCIN/AIN1/P3.0 5 16 P0.0/PWM3/IC3/MOSIT1
UART N76E003AT20 -
" <Pl INT1/AINO/P1.7 5 15 P1.0/PWM2/IC2/SPCLK
12¢ oo 7 14l P1.1/PWM1/ICI/AIN7/CLO
EXTI —
= Timerjo [SDAITXD_1/ICPDA/OCDDA/P1.6 8 3 P1.2/PWMO/ICO
= Capture VDD 9 12 P1.3/SCL/[STADC]
" System PWM5/IC7/SS/P1.5 10 11 P1.4/SDA/FB/PWM1
= QOthers -

On Board LED

How to get started?

| have made two videos — one for Keil and the other for IAR. These videos show in details how to start
building projects with N76E003 using these compilers.

https://www.youtube.com/watch?v=hJ-SyFDZ8go

https://www.youtube.com/watch?v=xZ5gkk6WQpw

Nuvoton Files

No matter which compiler you use ultimately, you’ll need the following header (.h) and source files
(.c) to get things done properly.

Common.c Common.h Delay.c Delay.h Function De MNTBEDD3.h SFR Macru:u
fine.h

Now what these files do? These files make up something like a standard peripheral library. They define
registers and functions that are needed to simplify coding. For instance, the Delay files dictate the
software delay functions by using hardware timers. Likewise, SFR_Macro and Function_Define files
define hardware-based functions and SFR uses. | highly recommend going through the files.

https://www.youtube.com/watch?v=hJ-SyFDZ8go
https://www.youtube.com/watch?v=xZ5gkk6WQpw

About the N76E006 Test Board

Shown below are the actual photo, the PCB layout and the schematic of the unofficial cheap N76E003
test/development board. This is the board I will be using in this tutorial series.

hJ

0
o
i

w.
© 0000 0o0|0]

3.950103 (mm)

2
=

IEI
|

e
R1 |
=

B vt O

w——73(0, 00017 (mm)—>

There is nothing much about the 30mm x 43.5mm board. Everything is visible and neat. However,
having the schematic alongside the board layout in possession is a great advantage. There are two
sidewise header that bring out the GPIO pins and positive supply rails. There is another header
opposite to the USB port. This header is for connecting a Nulink programmer-debugger interface and
it also has a serial port interface brought out straight from the N76E003 chip. This serial port is useful
for quickly debugging/testing stuffs with a serial port monitor. There is an LED connected with P15 pin
via a computer jumper. The only thing that is wrong in this board is the crystal resonator part. N76E003
has an external clock input pin but it is meant to be used with active oscillators/crystal modules. In
the official, SDK there is no such points to connect an external crystal resonator. The internal high
frequency oscillator is accurate enough for most cases.

At this point, | would like to thank Electro Dragon for these images because they are the only ones
who shared these resources online.

R 12pE2H

(ND
90d
Lod

EAL

o
H
—] 0T D

cod
0cd
(ND

01

£d

Iapeap]

b
=9

o
=3}

(]
=9

|

&

|

=
=9
Lol Mo T L B = al= <=]

]

01

01

od

Iapea

|

[ar
-
e

|

-
7

wy
=%

o
=9

= -
| —
Q..|Q..
bl Mlad B L Ln B =T ol - 0 =

=
inl
=

]

01

ano

9D —=1VIX5D

.
n_n_mm\i’ .._H_NN\—V
|_.|

4 M

0td

< _N_Iv_m I Lld

E00H9LN

Fid i
—_—
£1d (A
—_—
Tld A

¥ 1d/VaS/a TN
e 1dvasaaioavisl
T 1d/OWMA/0DT

TTd/TAMA/TOILNIVIOTO

SWMA/LOI/SS/S 1d

aan

[vash axuvadouvaado/m id

anNDd

IF == 01 /TNM/ZOINTDS ILNI/ONIV/L Td
—or—5] 0 0d/ENMA/EOMISOW/I L OLNINIOSO/INIV/OEd 4
TiF] 775 1 0dINMA/OVOSIN 1S¥U/0'Td
= P T0dAIDdOIADAD0 T ax¥10s] AXU/INIV/LOd
= = € 0d/SNMA/SOLINIV AXL/NIV/90d
= 555 ¥ Od/SNIVIOAVLS/ENMA/ED] TWMABDTOL/PNIV/S 0d

a1

ano ano
= zmpray =
z
! MO
) za
TaTTe M1
a0
|
M
£AE
£
T sid
6 AL ano
g 91d 1
[aND _u
mro
J Lld fdd-MS
oS 0=
E 0td H
5 0zd S
m Lod C
7 904
AL
q S0d
ano
== aND
anNo = <IiapEay
= CELITISWY | I "
— ¢
3_% mop [AVAIND — t
T Tl —¢
s mop up I
1 4 €
£EA 0 asn

Shown below is the official SDK board’s schematic:

0Idd

[-WT] oM
—1 e L ”4 —1 e Bl ”v|.._.
Ll qr £ [Ly e Skt Jd8L P CLL L
ZLhlg d3 sh ELNId e dar s p EHl
e | — T R—: Y SS—i ebeq 330 ¥» °eoejIe9jur bngeg
- d ot 6 b : . dzt up e -
ETTEN - T o e do ep Sl ==
— qvl ELp S - il L — T dm
L= E— T |WF._h|.,‘| g G p—Fhid g
e 1 5 = —d Ay £ p—fid I._.mmmP.|r g
— doe 6 p—Ghid —Zhid Az T S— S v
02Nl DgHId LNl LNId peuuaa oA 3 2
T 5dr > w L
€00F9LN _ | I
1 N E |
024051 ED03SLN 3 N33HD |HIMOd
falal}
T 7 ravosE MG SINMAZOISS S Ld
T Ly noeloavis] _ aaa
ZLHIe Z Ll W M0 [vaslL OXLYO4DI V00008 Ld
037 EWMId EL ¥ 1o/l LDl N OND
I PL Y 1 2N MAEDI 1S LIMLOMIE L £
LMid SL N g B MDD AS R LL DLMLMITS O/ NIV ATEd m v = _ _
— OINIid O R | i MdrLOSIN ISHOE ; L.
e —aH] 2 0dM0d010000N " axud10s] axeenvicod b N 038 s el
ERERT e B S MASDI BN OXLENIVS0d |2
LHId Gl B g SMIVAOO VLS BN MA/ED] ZINMAEDLOLYNIYS Od
0ENId 0 g L LMId
IoMOodg - 12599 - -
i} == oM ADLHNDL
dz-dis = dz-dis LY
oM oM E _ﬁm_“l._qmrom_ HENd
- - 5 ¥
z Zh — o
[- ¥ £ _:_u _.,_"_ES_ TS5301L
LE L b £ : W=
ardr Bl z L HOL
o 1 ad
aan [}
gdr OaA s
aaa.

Coding Nuvoton N76E003

When entering a new environment, things are not very easy at first. It takes times to get acquainted
with new the new environment, new tools and new stuffs. New means everything different from the
ones that you have been using prior to its introduction. In many occasions, | had trouble playing with
new microcontrollers due to this. However, after some decent play offs things unfolded themselves.

President JFK’s speech on lunar landing should be an inspirational note for everyone who is trying to
do something new or something that he/she has never done before:

“We choose to go to the Moon in this decade and do the other things, not because they are easy, but
because they are hard; because that goal will serve to organize and measure the best of our energies
and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone,
and one we intend to win, and the others, too.”

Both Keil and IAR are excellent tools for coding Nuvoton MCUs. | have used both and everything is
same in both cases. Literally there is no difference at all. | won’t recommend which one to use and |
leave the choice to the readers. However, there are some areas where you may find difficulty porting
codes of one compiler to the other. The table below summarizes some of these differences.

Interrupt Vector | Interrupt vector number, e.g. Interrupt vector address, e.g.
EXT_INTO(#pragma vector = 0x00

interrupt © __interrupt EXTIO(
{ {
} }

String Array for txt[] = txt[] =

LCD Libraries {"MICROARENA"}; {"MICROARENA"};
Adding Assembly
Code nop;

or simply:

N76E003 Header | faiglepislel-amu\ VA1 E RN E1a I #include "N76E003.h"

File
Memory Specifier code *a; __code *a;
xdata *b; _ xdata *b;

Apart from these facts, you'll notice that the N76E003 BSPs don’t contain any software-based delay
libraries unlike other compilers. Nuvoton BSPs are rather equipped with accurate timer-based delay
libraries but personally | like software delays since they offer more flexibility, cross-environment
compatibility, less coding and don’t use anything except CPU cycles. Don’t worry, | have developed a
reasonably accurate software delay library.

Two more things | would like to highlight here. Firstly, both Keil and IAR compiler can throw some
errors during code compilations. Most of these errors are due to BSP definitions. One such error is in
the line below:

=0xAA =0x55 =0x01 =0XxAA =0x55 =0x00 =

If you try to use set_P0S_6 definition, IAR sometimes throws an error because it can’t find BIT_TMP.
However, there are other similar definitions that don’t throw such error and in Keil you won’t notice
something like this. Such things are nasty illogical surprizes. We have to understand that the BSPs are
still in development. Always remember that the datasheet is your friend. | suggest that when you try
out the examples | have shown here, you read the relevant parts of the datasheet to enhance learning
and understanding.

The other thing to note is the fact that not always we have the luxury to avoid register-level coding
and so when needed we must have the right knowledge to use them. We can also use bit-level
manipulations as shown below:

Sometimes but not always, we have to code things the old ways. Sometimes mixing assembly code
with C code becomes a necessity. For instance, the software delay library uses this concept.

There are other aspects to consider too like case sensitivity and coding conventions. It is wise to
choose interrupt-driven methods over polling-based ones. Codes should be included in hierarchical
orders. Like such there are tons of stuffs to make your code smart and error-free. The best source of
knowledge of such things and much more are app notes of various manufacturers.

Whenever making a new library, add the followings in your library’s source code along with other
header files of your choice to avoid errors and nasty surprizes:

"N76E003.h" //for Keil compiler or “N76E@03_ IAR.h” for IAR compiler
"SFR_Macro.h"

"Function_define.h"
"Common.h"
"Delay.h"

Additionally, | have made a set of files called “Extended_Functions”. Here | added all the functions
that we will need almost every time when we deal with common internal hardware like timers, ADC,

etc. These files are like repositories of all the additional functions that | made for some internal
hardware — something that Nuvoton didn’t provide and something that makes coding lot easier.

NnUvVOoTON

Here I'm sharing two videos to demonstrate how to code and add custom-made library files in both
Keil C51 and IAR Embedded-Workbench.

https://youtu.be/m1roxhCM6TS

https://youtu.be/p dvXF4zmql

https://youtu.be/m1roxhCM6T8
https://youtu.be/p_dvXF4zmqI

General Purpose Input-Output (GPIO)

GPIOs are the most common hardware that we use in a microcontroller. Since N76E003 is based on
8051 architecture, we should be getting some similarities with the old school 8051s. Shown below is
the hardware schematic of N76E003’s GPIO block:

VDD

sy P\ swons B etk B4 [st

ol Fort Pin

On close inspection, we can realize that this structure has striking resemblance with the GPIO structure
of a typical 8051 microcontroller as shown below:

Voo o oo

20SC. PERIODS,

PORT
PIN

Q
FROM PORT
LATCH

o

INPUT
DATA

PORT PIN

Thus, we can expect similar behaviour.

There are four GPIO modes and these are as follows:

PxM1.n PxM2.n 1/0 Type ‘ Description
0 0 Quasi- An I/0 in this mode is both an input and output. It behaves just
Bidirectional | like the ordinary I/O of a typical 8051 micro.

0 1 Push — Pull | This mode is same as the first one but with stronger current
1/0 sourcing capability and is recommended when making outputs.

1 0 Input Only | This mode is intended for low power high impedance inputs

Mode unlike other modes.

1 1 Open-drain | As the name suggests, it is same as Quasi bidirectional mode

1/0 but with open-drain output that can sink current only.

PxM1.n and PxM2.n bits decide these modes. For most cases, we can stick to push-pull and input
modes as they are the most commonly used ones.

Code

"N76E003_iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

setup(void);

main(

{
setup();

while(1)

{
if(PO5 = 0x00)
{

Timer@_Delaylms(900);
}

set_P15;
Timer@_Delaylms(100);
clr P15;
Timer@_Delaylms(100);

setup()

{
P15 _PushPull Mode;

PO5_Input_Mode;

}

Schematic

"
wa - P05 Lt po.s/AINaTOACHPWM2 IC3/PWM3/STADC/AINS/PO.4. fudl— P04
206 2] po.s/AINTXD AINGCSPWMS/P03 et 2— PO
2 —B07_ 3] powamamx [SCLYRXD_1 OCDCK/ICPCK/P02 falS— P02
1K 1K P20 4.3 by oms MISOMCAPWMA/PO. 1 el —TPOL_
157 J—cz 157 —B30___ 5 3 ansioscivanTo TIMOSHICPWM3P0.0 b T00
1 sw-rn Ot 1 sw-rn —BT & prgamonnTi spcLCHPWM2PLo k10
l Gh 7 1 Gap CLOMAINTACIPWMIPLL feld—PLL
L —PI8 S.] b1 6/0CDDAICPDAITXD_I[SDA] copwMopl 2 fedd— P12
GRD GND V3 94 vpp [STADCJ/FB/SDAP1 3 fat2— P13
P1S/SSACT/PWMS PWMIFB/SDAPLA el —21

N76E003

Explanation

The Function_define BSP header file states GPIO modes as follows:

Like any definitions, we can straight call these in our coding and avoid clumsy register coding.

Similarly, SFR_Macro BSP header file defines the bit-level setting of all N76EQ03 registers. To set the
logic level of GPIO pins we can use the following definitions:

However, these don’t restrict us from using classical register-level coding. N76E003 header file states
all the registers present in it.

For port/pin reading | didn’t see any function definition as like one | already discussed. Thus, there are
two ways to do it on your own. The following as two examples of such:

if ((P@ & SET_BIT4) != 0)
{
¥
else
{
}

The demo here is a simple one. The onboard LED connected to P15 pin is toggled at a fixed interval.
When a button connected to P05 is pressed the off time of the LED is increased, affecting toggle rate.

Demo

Demo video: https://youtu.be/Y215BXukqgBk

https://youtu.be/Y215BXukqBk

Driving 2x16 LCD

Driving alphanumeric/text LCDs requires no special hardware as simple manipulation of GPIO pins and
understanding of their working principle are all that are needed.

Code

lcd.h

#tdefine LCD GPIO init

while(o

LCD_init();

LCD_send(value,

LCD_4bit send(lcd data);
LCD_putstr(*1lcd_string);
LCD_putchar(char_data);
LCD_clear_home(Ve

LCD_goto(X_pos,

toggle EN pin();

"N76EQ03.h"
"SFR_Macro.h"
"Function_define.
"Common.h"
"Delay.h"

"lcd.h"

LCD_init()

Timer@_Delaylms(10);

LCD_GPIO_init();

Timer@_Delaylms(100);
toggle EN_pin();
LCD_RS_LOW;
LCD_DB7_LOW;
LCD_DB6_LOW;
LCD_DB5_HIGH;
LCD_DB4_HIGH;

toggle EN pin();

LCD_DB7_LOW;
LCD_DB6_LOW;

LCD_DB5_HIGH;
LCD_DB4_HIGH;

toggle EN_pin();

LCD_DB7_LOW;
LCD_DB6_LOW;

LCD_DB5_HIGH;
LCD_DB4_HIGH;

toggle EN_pin();
LCD_DB7_LOW;
LCD_DB6_LOW;
LCD_DB5_HIGH;
LCD_DB4_LOW;

toggle EN_pin();

LCD_send((_4_pin_interface | _2 row_display | _5x7_dots), CMD);
LCD_send((display_on | cursor_off | blink_off), CMD);
LCD_send(clear_display, CMD);

LCD_send((cursor_direction_inc | display no_shift), CMD);

void LCD send(unsigned char value, unsigned char mode)

{

switch(mode)

{
case DAT:

{
LCD_RS_HIGH;
break;

}
case CMD:

{
LCD_RS_LOW;
break;

}

LCD_4bit_send(value);

void LCD_4bit_send(unsigned char lcd_data)

{

unsigned char temp = 0;
temp = ((lcd_data & 0x80) >> 7);

switch(temp)

case 1:

{
LCD_DB7_HIGH;

break;

}
default:

{
LCD_DB7_LOW;

break;

}

temp = ((lcd_data & 0x40) >> 6);

switch(temp)
{

case 1:

{
LCD_DB6_HIGH;

break;

}
default:

{
LCD_DB6_LOW;
break;

}

temp = ((lcd_data & 0x20) >> 5);

switch(temp)
{

case 1:

{
LCD_DB5_HIGH;

break;

}
default:

{
LCD_DB5_LOW;
break;

}

temp = ((lcd_data & 0x10) >> 4);

switch(temp)
{

case 1:

{
LCD_DB4_HIGH;

break;

}
default:

{

LCD_DB4 LOW;
break;

}
toggle EN_pin();
temp = ((lcd_data & 0x08) >> 3);

switch(temp)
{

case 1:

{
LCD_DB7_HIGH;

break;

}
default:

{
LCD_DB7_LOW;

break;

}

temp = ((lcd_data & 0x04) >> 2);

switch(temp)
{

case 1:

{
LCD_DB6_HIGH;

break;

}
default:

{
LCD_DB6_LOW;

break;

}

temp = ((lcd_data & 0x02) >> 1);

switch(temp)
{

case 1:

{
LCD_DB5_HIGH;

break;

}
default:

{
LCD_DB5_LOW;

break;

}

temp = ((lcd_data & 0x01));

switch(temp)
{

case 1:

{
LCD_DB4_HIGH;

break;

}
default:

{
LCD_DB4_LOW;
break;

}

toggle EN_pin();

LCD_putstr(*1lcd_string)
do

{
LCD_send(*1lcd_string++, DAT);
}while(*1lcd_string != "\0');

LCD_putchar(char_data)

LCD_send(char_data, DAT);

LCD_clear_home()

LCD_send(clear_display, CMD);
LCD_send(goto_home, CMD);

LCD_goto(

if(y_pos == 0)

LCD_send((@x80 | x_pos), CMD);

}

else

{
}

LCD_send((0x80 | ©x40 | x_pos), CMD);

toggle EN_pin(

LCD_EN_HIGH;
Timer@ Delaylms(4);
LCD_EN_LOW;

Timer@ Delaylms(4);

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

"lcd.h"

show_value(

main(

txt1[] = {"MICROARENA"};
txt2[] = {"SShahryiar"};
txt3[] = {"Nuvoton 8-bit uC"};
txt4[] = {"N76E003"};

LCD init();

LCD_clear_home();

LCD_goto(3, 9);
LCD_putstr(txtl);
LCD_goto(3, 1);
LCD_putstr(txt2);
Timer3_Delayl@ems(390);

LCD _clear_home();

for(s = @; s < 16; s++)

{
LCD_goto(s, 0);
LCD_putchar(txt3[s]);
Timer@_Delaylms(90);

}

Timer3 Delayl100ms(20);

for(s = 0; s < 7; S++)

{
LCD_goto((4 + s), 1);
LCD_putchar(txt4[s]);
Timer@ Delaylms(90);

Timer3_ Delayl@ems(39);

s = 0;
LCD_clear_home();

LCD_goto(3, 9);
LCD putstr(txtl);

while(1)

{
show_value(s);
S++;
Timer3_Delayl0@ms(4);

show_value(
ch = 0x00;
ch = ((value / 100) + 0x30);

LCD_goto(6, 1);
LCD_putchar(ch);

ch = (((value / 10) % 10) + 0x30);
LCD_goto(7, 1);
LCD_putchar(ch);

ch = ((value % 10) + 0x30);
LCD_goto(8, 1);
LCD_putchar(ch);

Schematic
@ 0w < X
“ouw UJE O ®TILE~O00
EERR PN] IV I [P P2 l\lCOO)C:‘—C\I('Jﬁ'U')m
A= han] hid B et
1K
"
W — LY po.s/aINeTonCEPWM2 ICH/PWMYSTADC/AINS/P0.4. o0
P06 2ed possamvrxD AINGACSPWMs/P03 fadd— PO
2 P07 3] po./AINVRXD [SCLYRXD_1.OCDCKACPCK/PD2 feibd—PO2
1K P20 4.0 promsT MISOMCA/PWMA/PO.1 ol — P01
J_m L? —P30_ Sk b3 oAINIOSCININTO TIMOSIICHPWM3/PD.0 ek — P00
0.1uf 4 e 78] by pramonTi SPCLKACYPWM2/PL0 fedd— P10
—GND 7 G CLOJAINTACIPWMIPL1 faetd— P11
L P16 Sd b1 6/OCDDAICPDA/TXD._I[SDA] icopwmorp1.2 fadd— P12
GND Vi 9 ¥ vpp [STADCYEB/SDA/PL 3 fodtd — P13
—LEL3 10 py sissacrpwms PWMIFB/SDAPLS fadl — P14

N76E003

Explanation

There is nothing to explain here. The LCD driver is based on simple manipulation of GPIO pins. The
codes for the LCD are coded using all available info on LCD datasheet - just initialization and working
principle. If you need to change GPIO pins just edit the following lines in the LCD header file:

#define LCD_GPIO_init

while(o

Demo

Demo video: https://youtu.be/RsetFrAffok

https://youtu.be/RsetFrAffok

Driving 2x16 LCD with Software SPI

One problem with alphanumeric LCDs and GLCDs is the number of GPIOs needed to connect so with
host micros. For a small micro like N76E003, each GPIO pin is like a gem and we can't afford to use too
many GPIO pins for an LCD. The solution to this problem is to use SPI/I2C-based LCD drivers that
significantly reduce GPIO pin requirement. Implementing software-based SPI/12C for such LCD drivers
is also both easy and universal since these solutions don't need hardware SPI/I2C ports. Since the
SP1/12C functionality is software emulated, any set of GPIO pins can be used — another advantage.

In this segment, we will be driving a 2x16 LCD with CD4094B Serial-In-Parallel-Out (SIPO) shift register
using software SPI. The same idea can be used for other similar shift registers like 74HC595. There are
other ways of using SPI-based LCDs but the aforementioned are the cheapest ways.

Code

LCD_3_Wire.h

#define LCD_GPIO init do
while(©

1
0

ox01
0x02

0x04 | oxe2
0x04 | 0x00
0x04 | oxe1l

data_value;

SIPO();

LCD_init();

LCD_toggle EN();

LCD_send(value,
LCD_4bit_ send(lcd data);
LCD_putstr(*1lcd_string);
LCD_putchar(char_data);
LCD_clear_home();

LCD_goto(X_pos,

LCD_3 Wire.c

"N76EQ03_iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

"LCD_3 Wire.h"

data_value;

bit value = 0x00;
clk = 0x08;
temp = 0x00;

temp = data_value;
LCD_STB_LOW();

while(clk > 0)

{
bit value = ((temp & 0x80) >>
bit_value &= 0x01;

switch(bit_value)

{

case 0:

{
LCD_SDO_LOW();

break;

}
default:

{
LCD_SDO_HIGH();

break;
}
LCD_SCK_HIGH();

temp <<= 0x01;
clk--;

LCD_SCK_LOW();
i

LCD_STB_HIGH();

void LCD_init(void)
{
Timere_Delaylms(10);

LCD_GPIO_init();

Timer@_Delaylms(10);

data_value = 0x08;
SIPO();
Timere_Delaylms(10);

LCD_send(©x33, CMD);
LCD_send(©x32, CMD);

LCD_send((_4_pin_interface | _2 row_display | _5x7_dots), CMD);
LCD_send((display_on | cursor off | blink_off), CMD);
LCD_send((clear_display), CMD);

LCD_send((cursor_direction_inc | display no_shift), CMD);

void LCD_toggle EN(void)
{
data_value |= 0xe8;
SIPO();
Timer@_Delaylms(2);
data_value &= OxF7;
SIPO();

Timer@ Delaylms(2);

void LCD_send(unsigned char value, unsigned char mode)

{

switch(mode)

{
case DAT:

{
data_value |= 0x04;
break;

}
default:

{

data_value &= OxFB;
break;

}

SIPO();
LCD_4bit_send(value);

void LCD 4bit send(unsigned char lcd data)
{

unsigned char temp = 0x00;

temp = (lcd data & OxF0);
data_value &= OxOF;
data_value |= temp;
SIPO();

LCD_toggle EN();

temp = (lcd data & Ox0F);
temp <<= 0x04;

data_value &= OxOF;
data_value |= temp;
SIPO();

LCD_toggle EN();

void LCD_putstr(char *1lcd_string)

{
while(*1lcd_string != '\@')

{
}

LCD_putchar(*lcd_string++);

void LCD_putchar(char char_data)
{

if((char_data >= 0x20) && (char_data <= Ox7F))

LCD_send(char_data, DAT);

void LCD_clear_home(void)

{
LCD _send(clear_display, CMD);

LCD_send(goto_home, CMD);

void LCD_goto(unsigned char x_pos,unsigned char y_pos)

{
if(y_pos == 0)

{
}

else

{

LCD send((0x80 | x pos), CMD);

LCD_send((0x80 | ©x40 | x _pos), CMD);

#include "N76E@03 iar.h"
#include "SFR_Macro.h"
#include "Function define.h"
#include "Common.h"

#include "Delay.h"

#include "LCD_3 Wire.h"

void show_value(unsigned char value);

void main(void)

{

unsigned char s = 0;

static char txtl[] = {"MICROARENA"};
static char txt2[] = {"SShahryiar"};
static char txt3[] {"Nuvoton 8-bit uC"};
static char txt4[] = {"N76E003"};

LCD_init();
LCD_clear_home();

LCD goto(3, 0);

LCD putstr(txtl);
LCD_goto(3, 1);
LCD_putstr(txt2);
Timer3 Delay100ms(30);

LCD_clear_home();

for(s = @; s < 16; s++)
{
LCD_goto(s, 0);
LCD_putchar(txt3[s]);
Timer@ Delaylms(90);

}

Timer3_Delayl@0ms(290);

for(s = @; s < 7; s++)
{
LCD_goto((4 + s), 1);
LCD_putchar(txt4[s]);
Timere_Delaylms(90);

}

Timer3_Delayl@ems(390);

s =0;
LCD_clear_home();

LCD_goto(3, 0);
LCD_putstr(txtl);

while(1)
{

show _value(s);

S++;

Timer3 Delayl0@ms(4);
s

show_value(
ch = 0x00;

ch = ((value / 100) + 0x30);
LCD_goto(6, 1);
LCD_putchar(ch);

ch = (((value / 10) % 10) + 0x30);
LCD_goto(7, 1);
LCD_putchar(ch);

ch = ((value % 10) + 0x30);
LCD_goto(8, 1);
LCD_putchar(ch);

Schematic

0 o LCD
PO.5/ATNA/TOACG/PWM2 IC3/PWM3/STADC/AINS/PO.4 ol — P04 oteL
PO.6/ATNTXD AING/CSPWMS/PD3 kL0
2
PO T/ATN2/RXD [SCLYRXD_1.0CDCK/CPCK/Po.2 fld P02 pou o
a o 888 9. =smmzsss
o p2oms MISONCA/PWMA/PO.1 I | I T
Aefer] <fifee ol
e} p3oamioscmmro TIMOSIIC/PWM3/PO.0 a&"—ﬁ—l Ay jYu|
’ 5__Plo D Qo |- i
o.luf P1T/AIND/INTI SPCLKAC2PWMPL0 feld— P10 » = -
GHD GND CLOAINTACHPWMI/PL bt —PIL I 2T
Iy
3 2 Q4
L —P16 8.0 b1 6I0CDDANCPDA/TXD_I[SDA] icopwmopl 2 feld— P12 as [
- . 6
GND V3 9 bypp [STADCYFB/SDA/PL 3 2 — P13 a7 [
]) .
P 100 by sissncmpwMs PWMUFB/SDAPL4 el — P14 Y
NT6E003 4094

The code demoed here is same as the last LCD code and so there is not much to explain. The GPIO
operations of the LCD are handled using a CD4094B Serial-In-Parallel-Out (SIPO) shift register. This
shift register here acts like an output expander. With just three GPIOs we are able to interface a 4-bit
LCD that needs at least six GPIOs to work.

The SIPO function shown below simulates software-based SPI.

bit value = 0x00;
clk = 0x08;
temp = 0x00;

temp = data_value;
LCD_STB_LOW();

while(clk > @)

{
bit_value = ((temp & 0x80) >> 0x07);

bit_value &= 0x01;

switch(bit_value)

{

case 0:

{
LCD_SDO_LOW();

break;

}
default:

{
LCD_SDO_HIGH();

break;

}

LCD_SCK_HIGH();

temp <<= 0x01;

clk--;

LCD_SCK_LOW();

}s

LCD_STB_HIGH();

To change pins, change the following the lines in the LCD_3_Wire header file:

#define LCD_GPIO_init do
while(©

Lastly, | have code two versions of this LCD library — one with BSP-based delays and the other with
software delays. Technically there’s no big change. The software-based one frees up a hardware timer
or two.

Demo

Demo video: https://youtu.be/F0-aeRM5VE4

https://youtu.be/F0-aeRM5VE4

Driving 2x16 LCD with Software 12C

We have already seen in the last segment how to use software SPI with a shift register to drive a 2x16
LCD. In this segment, we will explore the same concept with software 12C and PCF8574 12C port
expander IC. There is a popular readymade module for such task and | used it here. The advantage of
I2C-based LCD over SPl-based LCD driver is the lesser number of GPIOs required compared to SPI-
based LCD. However, it is slower than SPI-based drivers.

l_rt;lm!lllll!#ﬂlﬂ.
ALA '
_,ll,ltlll!'lm 1 2tn-N-TRH'ET

Code

SW_12C.h

SW_I2C_init()3
SW_I2C start();
SW_I2C stop();

SW_TI2C read(ack);
SW_I2C write(value);
SW_TI2C ACK NACK(mode) ;

SW I2C wait ACK();

SW_12C.c

"N76E@03_iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"SW_I2C.h"

SW_I2C_init(

SDA_DIR_OUT();
SCL_DIR_OUT();
Timer@_Delayl100@us(1);
SDA_HIGH();
SCL_HIGH();

SW_TI2C_start(

SDA_DIR_OUT();
SDA_HIGH();
SCL_HIGH();

Timer3 Delayl@us(4);
SDA_LOW();
Timer3_Delayl@us(4);
SCL_LOW();

SW_TI2C_stop(

SDA_DIR_OUT();
SDA_LOW();
SCL_LOW();
Timer3_Delayl@us(4);
SDA_HIGH();
SCL_HIGH();
Timer3_Delayl@us(4);

SW_TI2C read(

SDA_DIR_IN();

while(i > 9)

{
SCL_LOW();
Timer3 Delayl@us(2);
SCL_HIGH();
Timer3_Delayl@us(2);
Jj <<= 1;

if(SDA_IN() != 0x00)
{

}

Timer3_Delayl@us(1);
i--5

J++;

}s

switch(ack)

{
case I2C_ACK:

{
SW_I2C ACK NACK(I2C ACK);;
break;

}
default:

{
SW_TI2C_ACK_NACK(I2C_NACK);;

break;

}

return j;

SW_I2C write(

SDA_DIR_OUT();
SCL_LOW();

while(i > 9)
{

if(((value & 0x80) >> 7) != 0x00)
{

SDA_HIGH();

}

else

{
}

SDA_LOW();

value <<= 1;

Timer3 Delayl@us(2);
SCL_HIGH();
Timer3_Delayl@us(2);
SCL_LOW();

Timer3 Delayl@us(2);
1--5

SW_I2C_ACK_NACK(

SCL_LOW();
SDA_DIR_OUT();

switch(mode)

{
case I2C_ACK:

{
SDA LOW();
break;

}
default:

{
SDA HIGH();
break;

}

Timer3 Delayl@us(2);
SCL_HIGH();
Timer3_Delayl@us(2);
SCL_LOW();

SW_TI2C_wait_ ACK(

timeout = 0;
SDA DIR_IN();

SDA_HIGH();
Timer3 Delayl@us(1);
SCL_HIGH();
Timer3_ Delayl@us(1);

while(SDA_IN() != 0x00)
{

timeout++;

if(timeout > I2C timeout)

{
SW_I2C stop();

return 1;
s

SCL_LOW();
return 0;

PCF8574.h

"SW_I2C.h"

PCF8574_init(iE
PCF8574_read(Ve
PCF8574 write(data_byte);

PCF8574.c

"N76E003 iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"PCF8574.h"

PCF8574_init(

SW_TI2C_init();
Timer@_Delaylms(20);

PCF8574 read()
port _byte = 0;
SW_I2C _start();
SW_I2C_write(PCF8574_read_cmd);
port byte = SW I2C read(I2C_NACK);
SW_I2C stop();

return port byte;

PCF8574 write(data byte)

SW_I2C start();

SW_I2C write(PCF8574 write_cmd);
SW_I2C_ACK_NACK(I2C_ACK);

SW_I2C write(data byte);
SW_I2C_ACK_NACK(I2C_ACK);

SW_I2C stop();

LCD_2_Wire.h

"PCF8574.h"

LCD_init()

LCD_toggle EN();

LCD_send(value,
LCD_4bit_send(lcd_data);
LCD_putstr(*lcd _string);
LCD_putchar(char_data);
LCD_clear_home()5

void LCD goto(unsigned char x pos, unsigned char y pos);

LCD_2 Wire.c

#include "N76E003 iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
"Delay.h"
"LCD_2_Wire.h"

static unsigned char bl_state;
static unsigned char data_value;

void LCD_init(void)

{
PCF8574_init();
Timer@_Delaylms(10);

bl state = BL_ON;
data_value = 0x04;
PCF8574 write(data value);

Timer@_Delaylms(10);

LCD_send(©x33, CMD);
LCD_send(©x32, CMD);

LCD_send((_4_pin_interface | _2 row_display | _5x7_dots),
LCD_send((display_on | cursor_off | blink_off), CMD);
LCD_send((clear_display), CMD);
LCD_send((cursor_direction_inc | display_no_shift), CMD);

void LCD_toggle EN(void)
{

data_value |= 0x04;
PCF8574_write(data_value);
Timer@_Delaylms(1);
data_value &= OxF9;
PCF8574 write(data_value);
Timer@_Delaylms(1);

void LCD_send(unsigned char value, unsigned char mode)

{

switch(mode)

{
case CMD:

{
data_value &= OxF4;

break;

}
case DAT:

{
data_value |= 0xe01;
break;

}

switch(bl_state)
{
case BL_ON:
{
data_value |= 0xe8;
break;
¥
case BL_OFF:
{
data_value &= OxF7;
break;

}

PCF8574_write(data_value);
LCD_4bit_send(value);
Timer@_Delaylms(1);

void LCD 4bit send(unsigned char lcd data)
{

unsigned char temp = 0x00;

temp = (lcd_data & OxF0);
data_value &= OxOF;
data_value |= temp;
PCF8574 write(data_value);
LCD_toggle EN();

temp = (lcd_data & OxOF);
temp <<= 0x04;

data_value &= OxOF;
data_value |= temp;
PCF8574_write(data_value);
LCD_toggle EN();

void LCD_putstr(char *lcd_string)

{
do

{
LCD_putchar(*lcd_string++);

}while(*1lcd_string != '\@') ;
}

LCD_putchar(char_data)
{
if((char_data >= 0x20) && (char _data <= 0x7F))
{
LCD_send(char_data, DAT);
}
}

LCD_clear_home()
{
LCD _send(clear_display, CMD);
LCD_send(goto_home, CMD);
}

LCD_goto(
{
if(y_pos == 0)
{
LCD_send((0x80 | x_pos), CMD);
}

else

{
LCD_send((0x80 | ©x40 | x_pos), CMD);

"N76E@03_iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"LCD_2_Wire.h"

show_value(

main(

txt1[] = {"MICROARENA"};
txt2[] {"SShahryiar"};
txt3[] {"Nuvoton 8-bit
txt4a[] = {"N76E003"};

LCD_init();
LCD _clear home();

LCD_goto(3, 9);
LCD putstr(txtl);

LCD_goto(3, 1);
LCD_putstr(txt2);
Timer3_Delayl100ms(30);

LCD_clear_home();

for(s = @; s < 16; s++)
{
LCD_goto(s, 9);
LCD_putchar(txt3[s]);
Timer@ Delaylms(90);

}

Timer3_Delay100ms(20);

for(s = 0; s < 7; S++)
{
LCD_goto((4 + s), 1);
LCD_putchar(txt4[s]);
Timere_Delaylms(90);

}

Timer3_Delayl00ms(30);

s = 0;
LCD_clear_home();

LCD_goto(3, 9);
LCD_putstr(txtl);

while(1)
{
show_value(s);
S++;
Timer3_Delayle@ms(4);
};
}

void show_value(unsigned char value)

{

unsigned char ch = 0x00;

ch = ((value / 100) + 0x30);
LCD_goto(6, 1);
LCD_putchar(ch);

ch = (((value / 10) % 10) + 0x30);
LCD_goto(7, 1);
LCD_putchar(ch);

ch = ((value % 10) + 0x30);
LCD_goto(8, 1);
LCD_putchar(ch);

Schematic

L—'?
5 .
vy] posiamaroncerwm ICHPWM3/STADC/AINS/P0 4 sl —F0 g scL
]
P06 2 po.e/AINTXD AIN6/ICS/PWMS/P0.3 fald— L8 g spa
i .
P07 3.0 pp7/ANZRXD [SCLYRXD_1.0CDCK/ICPCK/P02 ftd— P02
]
IK P20 e p2omsT MISO/C4/PWM4/P0.1 et —POL
i l,—,q —B30___ 3.k p3o/aNi/oscIvINTO TIMOSVICHPWM3/P0.0 fabd P00
SW-PB
0.1uf + —BI7 6 b1 y/AINOANTI SPCLK/IC2/PWM2/P1.0 fat— P10
GND_ 71 GNp CLO/AINTACIPWMIPL1 fectd—F1
L —PI8 8.4 p16/OCDDA/NCPDA/TXD_I[SDA] icopwmop 2 fadtd— P12
GND V3 9 8 vpp [STADCJ/FB/SDA/P1 3 it — P13
P10 by sssncrpwms PWMI/FB/SDA/P1 4 fal—L14
N76E003
LD
iw E] WCC e
T 1) T
3 é Rl
3 = AL K 1 O O Y Y O
en o P s Y . e A R N AR
ADER 33 =
W R Ailee i E5 FIFA
T 1) T
o ==
H AL m [T -
g, & — H’:l v}
ACER 3% —
li:s)
31_-‘_\7 VT L:|4TK N
BT B __ /] P s
7 = 10E
AN - [Dy
] Ig-l:ﬂ" Ab 1 £]"tc
[- N B —‘f]— DA n =
SLL SCL G s o R s 1)
] ¥ Ll %QEE
7 & il g
_ET T 5 ps D8
f a4 e
J__ Vs B
O o =
Hj}'%m
DAL S04
Explanation

Just like the last example, software method is used to emulate 12C protocol using ordinary GPIOs.
There are three parts of the code —first the software 12C driver, second the driver library for PCF8574
12C 8-bit port expander and lastly the LCD driver itself. The LCD driver is same as the other LCD drivers
in this document. | kept the code modular so that it is easy to understand the role of each piece of
code. The I2C driver (SW_I2C) implements software I12C which is used by the PCF8574 driver. Thus, the
port expander driver is dependent on the SW_I2C driver and the LCD driver is dependent on the port
expander driver, and in cases like such we must find add libraries according to the order of

dependency.

The advantage of keeping things modular is to easily modify things in a fast and trouble-free manner
while keeping things ready for other deployments. In my codes | try to avoid repetitive and

meaningless stuffs with meaningful definitions. For instance, just change the following lines to change
pin configurations without going through the whole code:

Likewise, the SW_I2C functions are not implemented inside the LCD or port expander driver files so
that they can be used for other 12C devices.

| have code two versions of this LCD library just like the SPI-based ones — one with BSP-based delays
and the other with software delays.

Demo

T T il
(e 1 i
el bl =t

Demo video: https://youtu.be/vir6JuSGRxg

https://youtu.be/vIr6JuSGRxg

Driving seven Segments by Bit-banging TM 1640

Seven segment displays take up lot of GPIO pins when they are required to be interfaced with a host
micro. There are several driver ICs like MAX7219, TM1640, 74HC594, etc to overcome this issue.
TM1640 from Titan Micro Electronics does not support standard 12C or SPI communication protocol
unlike most other driver ICs. Thus, to interface it with our host N76E003 micro, we need to apply bit-
banging method just like the LCD examples.

Code
fonts.h

fonts[11] =

TM1640.h

#define TM1640_GPIO_init
while(®

TM1640_init(brightness level);
TM1640 start();

TM1640 stop();

TM1640 write(value);
TM1640_send_command(value);
TM1640_send_data(address,
TM1640 clear display();

TM1640.c

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"TM1640.h"

TM1640_init(brightness level)

TM1640_GPIO_init();

Timere_Delaylms(10);

DIN pin_HIGH();
SCLK_pin_HIGH();

TM1640_send_command(auto_address);
TM1640_send_command(brightness_level);
TM1640 clear display();

TM1640_start(

DIN pin HIGH();

SCLK _pin HIGH();
Timer3_ Delayl@us(1);
DIN pin_ LOW();
Timer3 Delayl@us(1);
SCLK _pin_ LOW();

TM1640 stop(

DIN pin_ LOW();
SCLK_pin_LOW();
Timer3_ Delayl@us(1);
SCLK _pin HIGH();
Timer3_Delayl@us(1);
DIN pin HIGH();

TM1640_write(
s = Ox08;

while(s > 0)

{
SCLK_pin_LOW();

if((value & 0x01) == 0x01)

{
DIN_pin_HIGH();

}

else

{
DIN pin_LOW();
}

SCLK_pin_HIGH();

value >>= 0x01;
S--5

TM1640_send_command(

TM1640_start();
TM1640_write(value);
TM1640 stop();

TM1640 send_data(address,

TM1640_send_command(fixed_address);
TM1640 start();

TM1640_write((OxCO | (OxOF & address)));
TM1640 write(value);

TM1640_stop();

TM1640 clear display(
S = 0x00;

for(s = 0x00; s < no_of_segments; s++)
{
TM1640_send_data(s, 9);
¥
}

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

“font.h"

"TM1640.h"

display data(segment,
main(

i=20;
j = 999;

TM1640_init(brightness_75 pc);;

while(1)

{
display data(e, i++);
display data(4, j--);
Timer3_Delayl@@ms(4);

}s

display data(segment,

if((value > 99) && (value <= 999))

{
ch = (value / 100);
TM1640_send_data((2 + segment), fonts[1l + ch]);

ch = ((value / 10) % 10);
TM1640_send_data((1 + segment), fonts[1l + ch]);

ch = (value % 10);
TM1640_send_data(segment, fonts[1l + ch]);

}

else if((value > 9) && (value <= 99))

{
TM1640_send_data((2 + segment), 0);

ch = (value / 10);
TM1640_send_data((1 + segment), fonts[1l + ch]);

ch = (value % 10);
TM1640_send_data(segment, fonts[1l + ch]);

}

else

{

TM1640_send_data((2 + segment), 0);

TM1640 send _data((1 + segment), 0);

ch = (value % 10);
TM1640_send_data(segment, fonts[1l + ch]);

}
Schematic
0

- P05 1. po 5/AING/TONICEPWM2 IC3/PWM3/STADC/AINS/P0.4 2l — P g scix
—L06__ 2 posramiTxD AIN6/CsPWMs/P03 L0 g piy

R2 P07 3.0 po7/aN2RXD [SCLYRXD_1.0CDCK/ICPCK/P0.2 et — PO

1K P20 4.Y by orsT MISO/NCA/PWMA/P0.1 el —POL

i I;,r_, —P30_ 51 p3 o/AINI/OSCINANTO TI/MOSVIC3/PWM3/P0.0 il P00

o lut + SW-PB_PI17_ 6.4 b 2/AINO/ANTI SPCLK/AC/PWM2/P10 feti— P10

l —CND 7 ¥ G CLOAINTICI/PWMIPL1 fetd— ELL

L —P16 %4 b1 6/0CDDA/ICPDA/TXD_I[SDA] icopwmop 2 fedd P12

GND V398 vop [STADCYFB/SDA/P] 3 a2l — P13

— 5 104 py ss8CTPWMS PWMIFB/SDAMP] 4 bl — P14

NT6E003

Explanation

Like the LCD libraries demoed previously, TM1640 is driven with GPIO bit-banging. Please read the
datasheet of TM1640 to fully understand how the codes are implemented. It uses two pins just like
12C but don’t be fooled as it doesn’t support 12C protocol. It uses a protocol of its own. To change pin
configuration, just change the following lines of code:

TM1640_GPIO_init

0

Demo

00
1L)

e

Demo video: https://youtu.be/2ufeAQkt5Jk

https://cdn.solarbotics.com/products/datasheets/tm1640.pdf
https://youtu.be/2ufeAQkt5Jk

External Interrupt (EXTI)

External interrupt is a key GPIO feature in input mode. It momentarily interrupts regular program flow
just like other interrupts and does some tasks before resuming interrupted task. In traditional 8051s,
there are two external interrupts with dedicated and separate interrupt vector addresses. The same
applies to N76E003. Highlighted below in the N76E003's interrupt vector table are the interrupt vector
addresses/numbers of these two external interrupts:

Source Address | Number Source Address. | Number

Reset 0000H - SPI interrupt 004BH g
External intermupt 0 0003H 0 WODT interrupt 0053H 10
Timer 0 overflow 000BH 1 ADC interrupt 005BH 11
External intermupt 1 0013H 2 Input capture interrupt 0063H 12
Timer 1 overflow 001BH 3 PWM interrupt 006BH 13
Serial port O interrupt 0023H 4 Fault Brake interrupt 0073H 14
Timer 2 event 002BH h Serial port 1 interrupt 007BH 15
I'C statusftimer-out interrupt 0033H 6 Timer 3 overflow 0083H 16
Pin intermupt 003BH T Self Wake-up Timer interrupt D08BH 17
Brown-out detection interrupt 0043H a

Code

"N76E003.h"
"SFR_Macro.h"

"Function_define.

"Common.h"
"Delay.h"

setup()s

EXT_INTO(
interrupt ©

{
}

set_Poo;

EXT_INT1(
interrupt 2

{

set_Po1l;

while(1)

{
Timer@ Delaylms(1000);
clr P00,
clr _PO1;

s

setup(

PO PushPull Mode;
PO1 PushPull Mode;
P17 Input_Mode;
P30 _Input_Mode;
set P1S 7;

set P3S 0;
set_ITO;

set_IT1;

set _EXO;

set EX1;

set_EA;

Schematic
2
i P05 LY po srAINA/TOACEHPWM2 IC3/PWM3/STADC/AINS/PO.4
— P06 2.} by eainTxn AING/ICS/PWMS/PO.3
,)
R2 —POT_ 3d po mamnzRxD [SCLYRXD_1.0CDCK/ICPCK/P0.2
.
IK P20 bl po.omst MISO/C4/PWMA4/PO.1
- lv_, — 230 3.1 p3g/AINI/OSCINANTO TIMOSIC3/PWM3/PO.0
SW-PB P17 &
oluf ——17 &8 1 7/AINO/NTI SPCLK/IC2/PWM2/P1.0
GND 7 Y Gup CLO/AINT/IC I/PWMI/PI.1
L —P16 81 p| 6/0CDDA/ICPDA/TXD_I[SDA] ICO/PWMO/PI2 IK
GND V3 9 X vop [STADC]/FB/SDA/P1 3 o
) , PIS 1 ! : N
W3 i L5103 by sssacpwMs PWMI/FB/SDA/P1.4 N
N76E003 =
R R GND
IK IK

[=]

Za

=]
i)
i
=)

Explanation

The setup for this demo is simple. There are two LEDs and two buttons connected with a N76E003
chip as per schematic. The buttons are connected with external interrupt pins. Obviously, these pins
are declared as input pins. Additionally, internal input Schmitt triggers of these pins are used to ensure

noise cancellation. Both interrupts are enabled along with their respective interrupt hardware. Finally,
global interrupt is set. Optionally interrupt priority can be applied.

P17 Input_Mode;
P30_Input_Mode;

set P1S 7;
set _P3S 0;

set_ITO;
set_IT1;

set_EXO;
set_EX1;
set_EA;

Since we enabled two interrupts with different interrupt vectors, there will be two interrupt
subroutine functions. Each of these functions will briefly turn on LEDs assigned to them. The LEDs are
turned off in the main function. Thus, the LEDs mark which interrupt occurred.

EXT_INTO(
interrupt ©

{
}

set_Poo;

EXT_INT1(
interrupt 2

{

set_Po1;

}

Demo

Demo video: https://youtu.be/fFpBpoNMNyI

https://youtu.be/fFpBpoNMNyI

Pin Interrupt — Interfacing Rotary Encoder

Apart from dedicated external interrupts, N76E003 is equipped with pin interrupt facility - a feature
that can be found in almost every microcontroller of modern times. With pin interrupt, any GPIO can
be made to behave like external interrupt. However, unlike external interrupts, a single hardware
interrupt channel and therefore one vector address is used for mapping a maximum of eight different
GPIO pins. These pins need not to be on the same GPIO port. When interrupt occurs, we need to assert
from which pin it originated. This feature becomes very useful when interfacing keypads and buttons.

POO—7! | - l
pro_ | o T PIFO
|

w |
P20— PITD "7
11
PID— | {PINEND | _-L

PIFEMD

PIPS[1:0]
(PICOIN[‘I:D]]

Pin Inbarmupt Channel 0

I
oo
P01 [ﬁ_/:/ T
P11 — | I : |
10
Reserved — PIT1 ™3 |
11 | ——
|
| L akl

FIF1

PIPEM1

Pin Intapnupt Channel 1

. . 5
. . | Pin Interrupt
. . —
|
|
0a : AH_T
P“-??\F —T"
a |
|

P1T— - .
Reserved —" PITBT 7 I allall
Reserved — PINENT

—

PIPEMT

LI

Ml

Pin Inbarmupt Channel 7

Code

"N76E003 IAR.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"soft_delay.h"
"LCD_2 Wire.h"

encoder_value

i

lcd _print(

= Ox3B
__interrupt PIN INT(

{
clr_EA;

if(PIF == ox@1)

{
if((P1 & @x03) == 0x02)
{

encoder_value++;

}

if(encoder_value > 99)

{

encoder_value = 0;

}
}

if(PIF == ox@2)

{
if((P1 & @x03) == 0x01)
{

encoder_value--;

}

if(encoder_value < 0)
{
encoder_value = 99;
}
}

main(

{
setup();

while(1)
{
set EA;
lcd print(14, 0, encoder value);
delay ms(490);
}
¥

setup()

{
P10 Input Mode;

P11 Input_Mode;
P15 PushPull Mode;

Enable BITO LowlLevel Trig;
Enable BIT1 LowlLevel Trig;

Enable INT Portil;

set_EPI;

LCD init();

LCD clear home();
LCD_goto(0, 9);
LCD_putstr("ENC Count:");

lcd_print(X_pos,
{
LCD_goto(x_pos, y_pos);
LCD putchar((value / 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);
LCD_putchar((value % 10) + 0x30);

Schematic
. ; '
i L pos/AING/TONCEPWM? IC3/PWM3/STADC/AINS/P0.4 ol — PU g sl
—L06 2} poeamvrxn AING/ICS/PWMS/P0.3 el PO3 o spa
2 2 o
2 POT__ 34 poyraNaRXD [SCLYRXD_1.0CDCK/ICPCK/P02 Jrtd— P02
LK P20 44 promst MISO/IC4/PWM4/PO.1 fell — POL
i 1;,,_, P30 Sk p3 0/AINIOSCINANTO TIMOSHICHPWM3/P00 faltl P00 g e
SW-PB ‘
0.1uf + 7 6 p17/ANO/ANTI spcLk/cyPwM2/p1 0 fi— P10 g ence
N
GND 7 ¥ Gnp CLOAINTAC/PWMIPL 1 fetd— P11
T—] .))
L —LP16 5.4 b1 6/0CDDA/NCPDAITXD. I[SDA] icopwmopl 2 ftd— P12
GND Vi 9 X vpp [STADCJ/FB/SDAR1 3 fal2 P13
P1.5/SSAICTPWMS PWMI/FB/SDA/P] 4 bl — P13
N76E003
Explanation

Pin interrupt is not same as dedicated external interrupt but still it is very useful in a number of cases.
In this demo, two pin interrupts are used to decode a rotary encoder. Probably this is the simplest
method of decoding a rotary encoder.

Setting up pininterruptis very easy. We need to set the pin interrupt pins are inputs. We can optionally
use the internal Schmitt triggers. Then we decide the edge to detect and which ports to check for pin
interrupt. Finally, we set the pin interrupt hardware.

P10 _Input_Mode;
P11 Input_ Mode;

Enable BITO LowlLevel Trig;

Enable BIT1 LowlLevel Trig;

Enable INT_Portil;

set_EPI,;

Inside the pin interrupt function, we need to check which pin shot the interrupt by checking respective
flags. Encoder count is incremented/decremented based on which flag got shot first and the logic state
of the other pin. Since here a rotary encoder is interfaced with pin interrupt facility of N76E003, we
have to ensure that the micro doesn’t detect any further or false interrupts while already processing
one interrupt condition. This is why the global interrupt is disabled every time the code enters the pin
interrupt function. This is restarted in the main. Similarly, to ensure proper working we have clear the
interrupt flags before exiting the function. P15 is toggled with interrupt to visually indicate the rotation
of the encoder.

#pragma vector = Ox3B
__interrupt void PIN_INT(void)

{
clr EA;

if(PIF == 0x01)

{
if((P1 & 0x03) == 0x02)
{

encoder_value++;

}

if(encoder_value > 99)

{

encoder_value = 0;

}
}

if(PIF == 0x02)

{
if((P1 & 0x03) == 0x01)
{

encoder_value--;

}

if(encoder_value < 9)

{

encoder_value = 99;

}

The main code just shows the encoder count. When the encoder is rotated in one direction, the count
increases while rotating it in the opposite direction causes the encoder count to decrease.

Demo

Demo video: https://youtu.be/nPEzTY|70ys

https://youtu.be/nPEzTYj70ys

Clock System

The clock system of N76E003 is very straight forward and very flexible. To begin with, there are three
clock sources, a clock selector and a common clock divider block apart from other blocks. Shown below
is the block diagram of N76E003’s clock system:

XN q' Fecuc .| Flash
" Memory
' 10
I
I
| Clock | Fosc Clock | Fsys

. - > CPU
! o1 Filter Divider
! 16MHz Internal | Frrc
: Oscillator 0o
: CKDIV Peripherals
: 0sC[1:0]
| 10 kHz Fure (CKSWT2:1]) Watchdog
| Internal > Timer .
! Oscillator — oo CLo LY
I
! Self (CKCON.1)
I » Wake-up
: Timer
1

The three sources are as follows:

Source Max Clock Speed Reliability/Accuracy Purpose
External Clock (ECLK) 16 MHz — External High - (dependent on | Main system clock
clock signal generator | oscillator accuracy and | when high timing
like crystal oscillator type) precision is needed
modules/electronic
circuitry
High Speed Internal 16 MHz — Internal high | Reasonable - (+1% for | General purpose main
RC Oscillator (HIRC) frequency RC most typical clock with 1%
oscillator with 1% temperature ranges tolerance or backup
tolerance and £2% for extreme | clock source when
temperatures) external clock is
present
Low Speed Internal RC | 10 kHz - Internal low Low - (+10% for most | Usually used for low
Oscillator (LIRC) frequency RC typical temperature power idle modes
oscillator with 10% ranges and +35% for when high timing
tolerance extreme precision is not
temperatures) required, not
recommend for RTC
and can’t be disabled

Once a given clock source is set, it becomes the clock for all systems. The only exception here is the
watchdog timer and the self-wake-up timer which are only run by the LIRC.

"N76E@03_iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

set_clock_source(
disable clock_source(
set _clock division factor(

main()
i = 30;

P11 _PushPull Mode;
P15_PushPull Mode;

set clock division factor(9);
set _clock source(HIRC);

set_CLOEN;

while(i > 0)

{
clr_P15;
Timer@_Delaylms(100);
set_P15;
Timer@_Delaylms(100);
i--;

}

set_clock_source(ECLK);
disable clock source(HIRC);

while(i > @)

{
clr P15;
Timer@_Delaylms(100);
set_P15;
Timer@ Delaylms(100);
le=p

}

set _clock source(LIRC);
disable clock source(HIRC);

clock_source);
clock_source);
value);

while(1)

{
clr P15;

Timer@ Delaylms(1);
set_P15;
Timer@ Delaylms(1);

set_clock source(clock source)

{

switch(clock source)

{
case LIRC:

{
set 0SC1;

clr_0SCo;

break;

}

case ECLK:

{
set EXTEN1;

set EXTENO;
while((CKSWT & SET_BIT3) == 0);

clr 0SC1;
set_0SCo;

break;

}

default:

{
set_HIRCEN;

while((CKSWT & SET_BIT5) == 0);

clr_0SC1;
clr_0SCo;

break;

}
}

while((CKEN & SET_BIT@) == 1);
}

disable clock_source(clock_source)

{

switch(clock source)

case HIRC:

{
clr HIRCEN;

break;

}

default:
{

clr EXTEN1;
clr EXTENO;
break;

set _clock division factor(

"

{
CKDIV = value;
}
Schematic
Pos 1|
V3 V3
P06 2
R ﬁm P07 ‘%
1K 1K P20 o8
J_ I P
87 C2 87
SW-PB SW-PB P17 ...
1 0.1uf + 5)
E GND 7
g
g Pl6 8
1 = £ —_—
oND GND Wi 9
Explanation

PO.S/AIN4TO/ICEHPWM2
PO.6/AIN/TXD
PO.7/AIN2/RXD
P2.O/RST

P3 0/AIN /OSCIN/INTO
P1.7/AINO/INTI

GND

P1.6/OCDDA/ICPDA/TXD_I[SDA]

VDD

P1.5/SS/ICT/PWMS

IC3/PWM3/STADC/AINS/PO.4
AIN6/CS/PWMS/P0.3
[SCLYRXD_1.OCDCK/ICPCK/P0.2
MISO/ACAPWMA/POL
TI/MOSKIC3/PWM3/P0.0
SPCLE/IC2Z/PWM2/PL.O
CLO/AINT/ICI/PWMI/PL.1
ICO/PWMO/PI 2
[STADC|/FB/SDA/P1.3

PWMI/FB/SDA/PL .4

NT6E003

Jazhjeuy

Jeusigfadodsoasp

The very first thing to note is the absence of two OSC pins unlike other micros and yet a crystal
resonator is connected with P30 and P17. This configuration is not correct. There is only OSCIN pin.
This is because N76E003 can only be driven with active clock sources like crystal modules, external
electronic circuitry, etc. The HIRC clock source is accurate enough for most purposes and there is
literally no need for external clock. | have done most of the experiments with HIRC and I'm satisfied

with it.

Many people don’t understand the difference between a crystal oscillator module and a crystal
resonator. Both are based on quartz crystals but the oscillator one has internal electronics to generate
clock pulses precisely while the resonator just contains the quartz crystal. Crystal modules are accurate
compared to resonators because the internal electronics in them take care of the effects of
temperature. Resonators are therefore called passive clock crystals while the clock modules are
termed active clocks.

Xtal
C1 L1 Rs
— =TT AN
*~— —e
i
Co
Crystal Resonator
R1

EN_}— out
R2
Xtal g3 g

— o AA—

Crystal Oscillator

== o1 g 5
\V4

Here to test all three clock sources, | used two things — first the onboard LED and second the clock
output pin. Different clock sources are enabled briefly one after another and the onboard LED is
blinked. The blinking rate of the LED is an indirect indicator of clock speed. The clock output too is
monitored with an oscilloscope/signal analyser for clock speeds. HIRC is turned on first, then ECLK and
finally LIRC. By default, both HIRC and LIRC are turned on during power on. When switching between
clock sources, we should poll if the new clock source is stable prior to using it and disable the one that
we don’t need.

| have coded the following three for setting up the clock system. Their names suggest their purposes.

set _clock source(clock source);

disable clock source(clock _source);
set _clock division factor(value);

These three functions will be all that you’ll ever need to configure the clock system without any hassle.
The first two are most important as they select clock source and disabled the one that is not need. If
you are still confused about setting the system clock then you can avoid the clock division function
and straight use the following function:

set_clock frequency(

{

F osc = (F_osc / (2 * F_sys));

if((F_osc >= 0x00) && (F_osc <= OxFF))
{

CKDIV = (()F_osc);
}

}

This function takes two parameters — the frequency of the clock source and the frequency of the
system after clock division.

Demo

it islc

i
sl
WAL

m B COM VIGNIG

Demo video: https://youtu.be/C 0loeogAVE

https://youtu.be/C_01oeoqAVE

12-Bit ADC — LM35 Thermometer

Most 8051s don’t have any embedded ADC but N76E003 comes with a 12-bit SAR ADC. This is also
one area where N76E003 differs a lot from STM8S003. The 12-bit resolution is the factor. N76E003
has eight single-ended ADC inputs along with a bandgap voltage generator and a built-in comparator.
The ADC can be triggered internally with software or by external hardware pins/PWM. Everything is
same as the ADCs of other microcontrollers and there’s not much difference.

VDD

{ADCCOM1[3:2])

AlMO
AlMA
ANz — |
AlM3 —'—
AlNg 12-bit SAR [
AlMS ADC
AING |
AIMT |
Internal band-gap 1000 5 < 5
| "5‘ : | apcRs | aDcAL
ADCEN —») E |
| =]
— - —— 5 il
| ADC result |
ADCHS[3:0] ! 'CI]I'I"IPEITETJ]F |
ADCS b
B
i External Trigger !
1 1
| = [1] T |
| 1
1 1
! Po4 a [
: . : ADCEX |
| P13 —— !
1 .
| i1 ﬂ i
| ETGSEL[1:0] i
| STADCPX s DCcoNDs:4)) :
I ETGTYP[1:0] l
1 I
1 |
| 1

g S |

#include
#include
#include
#include
#include
#include

"N76E003_IAR.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"LCD_3_Wire.h"

#tdefine scalar 0.12412

void setup(void);

unsigned

void lcd

value);

void lcd_

value);

int ADC_read(void);
print_i(unsigned char x_pos, unsigned char y_pos,

print_f(unsigned char x_pos, unsigned char y_pos,

void main(void)

{

unsigned int temp = 0;
unsigned int adc_count = 9;

setup();

while(1)

{

adc_count = ADC read();

temp = ((unsigned int)(((float)adc_count) / scalar));
lcd_print_i(12, ©, adc_count);

lcd_print_f(11, 1, temp);

Timer@_Delaylms(600);

void setup(void)

{

LCD_init();
LCD_clear_home();
LCD_goto(0, 9);
LCD_putstr("ADC Count:");
LCD_goto(@, 1);
LCD_putstr("Tmp/deg C:");

Enable ADC_AINGO;

unsigned

{

int ADC_read(void)

register unsigned int value = 0x0000;

unsigned int

unsigned int

clr_ ADCF;
set_ADCS;
while(ADCF == 9);

value = ADCRH;
value <<= 4;
value |= ADCRL;

return value;

lcd print_i(X_pos,

LCD_goto(x_pos, y_pos);

LCD_putchar((value / 1000) + 0x30);
LCD_goto((x_pos + 1), y_pos);

LCD putchar(((value % 1000) / 100) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar(((value % 100) / 10) + 0x30);
LCD_goto((x_pos + 3), y_pos);

LCD putchar((value % 10) + 0x30);

lcd_print_f(X_pos,

LCD_goto(x_pos, y_pos);

LCD_putchar((value / 1000) + 0x30);
LCD_goto((x_pos + 1), y_pos);

LCD putchar(((value % 1000) / 100) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar('.");

LCD _goto((x_pos + 3), y pos);
LCD_putchar(((value % 100) / 10) + 0x30);
LCD_goto((x_pos + 4), y_pos);
LCD_putchar((value % 10) + 0x30);

Schematic

o
" MLPO_SIAINN‘[{HIC&JPWME IC3/PWM3/STADC/AINS/P0.4 a2l — PO g 578
P06 2.4 po.eramnTxD AINGICSPWMS/P03 e TB g sck
2 P07 3. poyamN2/RXD [SCLYRXD_1.0CDCK/CPCK/P0.2 fet— P02 g spo

P20 4.8 poomst MISO/C4/PWM4/PO.1 bl —FOL

:_C;’“ B l —L30__ 354 p3o/aNvOSCININTO TIMOSUICYPWM3PO.0 fadf— P00

LM350—-—-)L P1.7/AINO/INTI SPCLKACYPWM2/PL 0 fatd— P10

=20 71 GND cLO/AINTICPWMIPL1 fedd—FLL

L —° 51 p1 6/OCDDA/ICPDA/TXD_I[SDA] 1coPWMoP 2 fedd— P12

GND 2 1 vop [STADCY/FB/SDA/PL 3 fal2— P13

— P35 108 p) ssscTPWMS PWMUFB/SDA/PL 4 ol — P14

N76E003
Explanation

In this demo, one ADC channel (AINO) is used to read a LM35 temperature sensor. Polling method is
used to read the ADC.

Enabling the ADC is simply done by coding the following line:

Enable ADC AINGO;

In the background of this, ADC channel selection and other parameters are set. If you want more
control over the ADC then you must set the ADC registers on your own. Most of the times that can be
avoided.

Reading the ADC needs some attention because the ADC data registers are not aligned like other
registers and we just need 12-bits, not 8/16-bits.

ADCRH — ADC Result High Byte
7 6 5 [4 | 3 | 2 | 1 | 0

ADCR[11:4]
R
Address: C3H Reset value: 0000 0000b
ADCRL — ADC Result Low Byte
7 6 5 4 3 | 2 | 1 | 0

ADCR[3:0]
R

Address: C2H

Reset value: 0000 0000b

Notice that the we must extract ADC from ADCCRH and from the low four bits of ADCCRL. To handle
this issue the follow function is devised:

ADC_read(

value = 0x0000;

clr_ADCF;
set_ADCS;
(ADCF == 0);

value = ADCRH;
value <<= 4;
value |= ADCRL;

value;

When this function is called, the ADC conversion completion flag is cleared and the ADC is software-
triggered. The conversion completion flag is polled. When this flag status is changed, the ADC data
registers are read. Finally, the value is returned.

LM35 gives 10mV output for each degree of temperature. Therefore, for 26°C the sensor is supposed
to give 260mV output. At 3.3V the ADC count will 4095 while at OV the ADC count will be 0 count.
Thus, 0.806mV equals one count and so 260mV should give:

260

— = 322 counts.
0.806

In the display, we have to show 26.00°C i.e. 2600 considering no decimal point and fully integer value.

Thus, to transform 322 to 2600, we have to divide the result with a scalar (0.12412). The main code
just does that after reading the ADC. The ADC count and temperature are then both shown in the LCD.

Demo

Demo video: https://youtu.be/j-8gGBzRxAQ

https://youtu.be/j-8qGBzRxAQ

ADC Interrupt — LDR-based Light Sensor

Like any other interrupts, ADC interrupt is a very interrupt. In the last example we saw polling-based
ADC readout. In this segment, we will see how to use interrupt-based method to extract ADC data.
The concept of ADC interrupt is simply to notify that an ADC data has been made ready for reading
once triggered.

Code

#include "N76E003 IAR.h"
#include "SFR_Macro.h"
#include "Function define.h"
#include "Common.h"

#include "soft delay.h"
#include "LCD_2 Wire.h"

#define LDR_constant 100000.0
#define R_fixed 10000.0
#define VDD 4095

adc_value = 0x0000;

setup()
ADC_read()
lcd_print_i(X_pos,
value);
measure_light_intensity();

#pragma vector Ox5B
__interrupt ADC_ISR(

{

adc_value = ADC_read();
clr_ ADCF;

}

void main(void)

{

unsigned int lux = 0;
setup();

while(1)

{
set_ADCS;
lux = measure_light intensity();
lcd print_i(12, @, adc_value);
lcd print_i(12, 1, lux);
delay ms(400);

void setup(void)

{
LCD_init();
LCD clear home();
LCD_goto(0, 9);
LCD_putstr("ADC Count:");
LCD_goto(@, 1);
LCD_putstr("Lux Value:");

Enable ADC AIN4;
set_EADC;
set EA;

unsigned int ADC_read(void)

{

register unsigned int value = 0x0000;

value = ADCRH;
value <<= 4;
value |= ADCRL;

return value;

void lcd_print_i(unsigned char x_pos, unsigned char y pos, unsigned int value)
{

LCD_goto(x_pos, y_pos);

LCD_putchar((value / 1000) + 0x30);

LCD goto((x_pos + 1), y pos);

LCD_putchar(((value % 1000) / 100) + 0x30);

LCD_goto((x_pos + 2), y_pos);

LCD putchar(((value % 100) / 10) + 0x30);

LCD goto((x_pos + 3), y pos);

LCD_putchar((value % 10) + 0x30);

measure_light intensity(
lux
lux = adc_value;

lux (LDR_constant * ((VDD / (R_fixed * lux))) - 0.1);

if((lux >= @) && (lux <= 9999))

return (()1lux);
else
return 0;
Schematic
1
.) ,
w v L0 LY po 5/AING/TONCEPWM2 IC3/PWM3/STADC/AINS/P0.4 fa2l—PU g 518
v
—P06 2.4 ppeamnrxp AINGICSPWMs/P03 el — P03 g sck
] 1 2
2 P07 3.8 pga/AIN2/RXD [SCLYRXD_1 OCDCK/ICPCK/P02 JtS— P02 g spo
gl
= IK P20 4 sy omst MISO/IC4/PWM4/P0.1 fatl—FPOL
LSV Bl —B30___ 5} p30/aN1/0SCINANTO TIMOSKIC3PWM3/P00 ke P00
oluf —H7__ 6] prsamonnT) spCLK/C/PWM2/P1 0 feek—F10
I 7
I GND 7§ G CLO/AINTACT/PWMIPL fotd—FLL
, 1 2
L P16 84 b1 6/0CDDA/ICPDA/TXD_1[SDA] icopwMop1 2 i — P12
GND V3 9 8 vpp [STADC}/FB/SDA/P1 3 fart2 — P13
PIS 10 p) sissncmpwms PWMI/FB/SDA/P] 4 bl — P14
N76E003
Explanation

Setting the ADC in interrupt is not much different from the previous example except for the interrupt
parts.

Enable ADC AIN4;
set EADC;
set_EA;

We have to enable both the ADC and global interrupts.

The reading process is also same:

ADC_read(

value = 0x0000;

value = ADCRH;
value <<= 4;
value |= ADCRL;

return value;

The ADC is triggered in the main with the following line of code since we are using software-based
triggering:

set_ADCS;

Now instead of reading the ADC in the main by polling, the ADC is read in the interrupt.

#pragma vector Ox5B
__interrupt ADC_ISR(
{

adc_value = ADC_read();
clr ADCF;

}

When ADC interrupt occurs, we must clear ADC interrupt flag and read the ADC data registers. In this
way, the main code is made free from polling and free for other tasks.

The demo here is a rudimentary LDR-based light intensity meter. Light falling on the LDR changes its
resistance. Using voltage divider method, we can back calculate the resistance of the LDR and use this
info to measure light intensity.

Demo

Demo video: https://youtu.be/3TcjGDZ4koE

https://youtu.be/3TcjGDZ4koE

ADC Comparator

Many micros are equipped with on-chip analogue comparator. N76E003 has an embedded ADC
comparator. The main feature of this comparator is the range it offers. Unlike comparators of other
micros in which only a few selectable set points can set, the ADC comparator of N76E003 can be set
in any range from 0 count to the max ADC count of 4095. This allows us to easily implement it for
many applications like low battery alarm, SMPSs, over voltage sense, overload detection, etc. It must
be noted however, it is not a true comparator because a true comparator has nothing to do with ADC.

ORI | ADCMPO
: I o[(ADCCON24
I () — ADC compare event

ADCMP[11:0] ° (ASEE%EET)

f ADCMPOP
ADCMPEN (ADCCONZ.6)

(ADCCON2.5)

The comparator block is situated at the output of the ADC and so it is just a single block like the ADC
but all eight channels share it. Thus, when it is needed to compare multiple channels, it should be
reset and reconfigured.

Code

#include "N76E003 IAR.h"
#include "SFR_Macro.h"
#include "Function define.h"
#include "Common.h"

#include "soft_delay.h"
#include "LCD 2 Wire.h"

adc_value = 0x0000;

setup()5
ADC_read();
set_ADC_comparator_value(
lcd_print_i(X_pos,
value);

#pragma vector 0x5B
__interrupt ADC_ISR(

{

adc_value = ADC_read();
clr_ ADCF;

{

}

}

while(1)
{
set_ADCS;
lcd print_i(12, @, adc_value);

LCD_goto(12, 1);

if((ADCCON2 & 0x10) != 0x00)
{ LCD putstr("HIGH");
set_P15;
}
else
{
LCD putstr(" LOW");
clr P15;
¥

delay ms(400);

setup()
P15 PushPull Mode;

LCD_init();

LCD clear home();
LCD_goto(0, 9);
LCD_putstr("ADC Count:");
LCD_goto(@, 1);
LCD_putstr("Cmp State:");

Enable_ADC_BandGap;
Enable_ADC_AIN4;

set_ADC_comparator_value(1023);
set_ADCMPEN;

set_EADC;
set_EA;

ADC_read()
value = 0x0000;
value = ADCRH;
value <<= 4;

value |= ADCRL;

return value;

set_ADC_comparator_value(

ADCMPH ((value & OxOFFQ) >> 4);
ADCMPL = (value & OX000F);

lcd print_i(X_pos,

LCD_goto(x_pos, y_pos);

LCD putchar((value / 1000) + 0x30);
LCD_goto((x_pos + 1), y_pos);

LCD putchar(((value % 1000) / 100) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar(((value % 100) / 10) + 0x30);
LCD_goto((x_pos + 3), y_pos);

LCD putchar((value % 10) + 0x30);

Schematic
1
s V] po sanvamoncepwa IC3/PWMY/STADC/AINS/P0 4 fa2l—L0 g sT8
—L£06 2] po sramvaxn AING/ICS/PWMS/PO.3 fald— T8 g scx
R2 P07 3.4 pp /amNamxD [SCLYRXD_1 OCDCK/ACPCK/P02 S — P02 g spo
57 = P20 3.3 poomst MISOAC4/PWMA/PO 1 el —FOL
—_Cf’w'Pq B30 3.} p3.0/AINI/OSCINANTO TIMOSIIC3PWM3/PO0 faé— P00
0.tuf 1 —P7_ 5] pry/amNoNTI spcLK/C/PWMP1 0 fald P10
—Mb__7 1 Gnp cLo/aNmacipwmipll fatd—PLL
— —P18 5] p1,6/0CDDA/NCPDA/TXD_I[SDA] ICOPWMO/P 2 ek P12
ONp 391 vop [STADCFB/SDAP1 3 faeld—F13
—FB 10 py sssnC7PWMS PWMI/FB/SDA/P] 4 bl —F11
NT6E003
Explanation

To configure the ADC comparator block, we just need to specify two things — the reference value with
which the comparison should to be done and the polarity of comparison. After setting these up, we
have to enable the comparator block. These are done as follows:

set_ADC_comparator_value(1023);

set_ADCMPEN;

Note in the code snippet above, | didn’t code anything regarding polarity because by default the
polarity is set as such that the comparator’s output will change state when the input voltage is greater
than or equal to the set ADC count level of 1023.

ADCCOMNZ — ADC Control 2

T [5 4 3 2 1 0
ADFBEM | ADCMPOP | ADCMPEN | ADCMPO - - - ADCDLY.8
RN R R R - - - RN
Address: E2H Reset value: 0000 000D
Bit Hame Description
T ADFBEM | ADC compare result asserting Fault Brake enable

0 = ADC asserting Fault Brake Disabled.

1 =ADC asserting Fault Brake Enabled. Fault Brake is asseried once its
compare result ADCMPO is 1. Meanwhie, FWM channels output Fault
Brake data. PWMRUN (PWMCOND.T) will also be automatically cleared by
hardware. The PWM output resumes when PWMRUN is set again.

i ADCMPOP | ADC comparator output polarity
0 =ADCMPO is 1 if ADCR{110] is greater than or equal to ADCMP[11:0].
1 =ADCMPO is 1 if ADCR]110] is less than ADCMP[1110]

5 ADCMPEN | ADC result comparator enable
0= ADC result comparator Disabled.
1 = ADC result comparator Enabled.
4 ADCMPO | ADC comparator output value

This bit is the output value of ADC result comparator based on the setting of
ACMPOP. This bit updates after every A/D conversion complete.

31 - Reserved
0 ADCDLY.8 | ADC external trigger delay counter bit 8
See ADCDLY register.

Just like ADC reading, we have to take care of the bit positions for the comparator set point. It is coded
as follows.

set_ADC_comparator_value(

{

ADCMPH ((value & OxOFFQ) >> 4);

ADCMPL = (value & Ox@00F);

In this demo, | also used the bandgap voltage as reference source:

Enable ADC BandGap;

The rest of the code is similar to the ADC interrupt code.

Demo

Demo video: https://youtu.be/Nn--zrezoqgc

https://youtu.be/Nn--zrezoqc

Data Flash — Using APROM as EEPROM

In most standard 8051s, there is no dedicated memory space as EEPROM. This is unlike other
microcontrollers of modern era. EEPROM memory is needed for the storage of critical data that need
to be retained even in power down state. In N76E003, there are two types of ROM memory. EEPROM-
like storage can be achieved by using APROM (Application ROM). APROM is the actual flash memory
where store our application codes. User Code Loader ROM or LDROM of N76E003 microcontroller, is
another ROM where we can keep a bootloader and configuration codes. Sizes of these ROMs can be
varied according to configuration bits.

37FFH/
3BFFH
IFFFH/
43FFH/
47FFHI
APROM
OFFFH/
OBFFH/
O7FFH/
03FFH/
0000H!™ LDROM
0000H 0000H
BS=0 BS =1

[1] The logic boundary addresses of APROM and LDROM are defined
by CONFIG1[2:0].

CID_READ
DID_READ

PAGE_ERASE_AP
BYTE_READ_AP
BYTE_PROGRAM_AP
PAGE_SIZE

ERASE_FAIL
PROGRAM_FATIL
IAPFF_FAIL
IAP_PASS

enable IAP_mode();
disable IAP_mode()E
trigger IAP()

unsigned char write_data_to_one page(unsigned int ul6_addr, const unsigned
char *pDat, unsigned char num);

void write data flash(unsigned int ul6_addr, unsigned char *pDat, unsigned int
num) ;

void read_data_flash(unsigned int ul6_addr, unsigned char *pDat, unsigned int
num) ;

#include "N76E@03 iar.h"
#include "SFR_Macro.h"
#include "Function define.h"
#include "Common.h"

#include "Delay.h"

#include "soft_delay.h"
#include "Flash.h"

static unsigned char EA Save bit;

void enable_IAP_mode(void)

{

EA Save bit = EA;
clr EA;

TA = OXAA;

TA = 0Ox55;

CHPCON |= oxo1 ;

TA = OXAA;
TA = OX55;

IAPUEN |= 0x01;
EA = EA Save_bit;

void disable IAP mode(void)
{
EA Save_bit = EA;
clr EA;
TA = OxAA;
TA = 0x55;
IAPUEN &= ~0x01;
TA = OxAA;
TA = Ox55;
CHPCON &=~ 0x01;
EA = EA Save_bit;

void trigger IAP(void)
{
EA Save_ bit
clr_EA;
TA = OxAA;
TA = 0Ox55;
IAPTRG |= 0x01;

EA = EA Save bit;

write _data_to_one_page(
*pDat, num)

i=9;

offset = 0;
__code *pCode;
___xdata *xd_tmp;

enable IAP mode();
offset = (ul6_addr & Ox007F);
i = (PAGE_SIZE - offset);

if(num > 1)

{
}

pCode (__code *)ul6_addr;

num i;

for(i = @; i < num; i++)
{ if(pCode[i] != OXFF)
{
break;
}
}

if(i == num)

{
IAPCN BYTE_PROGRAM_AP;
IAPAL = ul6_addr;
IAPAH = (ul6_addr >> 8);

for(i = 0; i < num; i++)
{
IAPFD = pDat[i];
trigger IAP();
IAPAL++;

}

for(i = @; 1 < num; i++)

{

if(pCode[i] != pDat[i])

break;

}
}

if(i != num)

{
goto WriteDataToPage20;

}

ulé_addr,

}

else
{
WriteDataToPage20:
pCode = (unsigned char _ code *)(ul6_addr & OxFF89);
for(i = @; i < 128; i++)
{
xd_tmp[i] = pCode[i];

for(i = @; i < num; i++)
{
xd_tmp[offset + i] = pDat[i];

IAPAL = (ul6_addr & OXFF80);
IAPAH = (ul6_addr >> 8);
IAPCN PAGE_ERASE_AP;

IAPFD = OXFF;

trigger IAP();

IAPCN =BYTE_PROGRAM_AP;

for(i = @; i < 128; i++)
{
IAPFD = xd_tmp[i];
trigger IAP();
TIAPAL++;

}

for(i = @; i < 128; i++)

{

if(pCode[i] != xd_tmp[i])
{

break;

}
}
Jwhile(i != 128);

}

disable IAP mode();

return num;

void write_data_flash(unsigned int ul6_addr, unsigned char *pDat,unsigned int
num)
{

unsigned int CPageAddr

unsigned int EPageAddr

unsigned int cnt = 9;

CPageAddr (ul6_addr >> 7);
EPageAddr = ((ul6_addr + num) >> 7);

while(CPageAddr != EPageAddr)

{
cnt = write_data_to_one_page(ul6_addr, pDat,
ulé addr += cnt;
pDat += cnt;
num -= cnt;
CPageAddr = (ul6_addr >> 7);
}

if(num)

{
}

write data_to one_page(ul6_addr, pDat, num);

void read_data_flash(unsigned int ul6_addr, unsigned char *pDat, unsigned int
num)

{

unsigned int i = ©;

for(i = @; i < num; i++)
{
pDat[i] = *(unsigned char _ code *)(ul6_addr+i);

#include "N76E003 IAR.h"

#include "Common.h"

#include "Delay.h"

#include "soft delay.h"
"SFR_Macro.h"
"Function_define.h"

#include "LCD 2 Wire.h"

#include "Flash.h"

#define BASE_ADDRESS

void lcd_print_c(unsigned char x_pos, unsigned char y_pos, unsigned char
value);

void lcd_print_i(unsigned char x_pos, unsigned char y pos, unsigned int
value);

void main (void)

{
unsigned char s = 0;
unsigned char val[1l] = {0};
unsigned char ret_val[l] = {0};

P15 PushPull Mode;

LCD init();
LCD_clear_home();

clr P15;

LCD_goto(0, 9);
LCD_putstr ("R Addr:");
LCD_goto(0, 1);

LCD putstr("R Data:");

for(s ; ; S++)

{
read_data_flash((s + BASE_ADDRESS), ret_val,
delay ms(10);
lcd print_i(11, @, (s + BASE_ADDRESS));
lcd_print_c(13, 1, ret_val[@]);
delay ms(600);

}

delay ms(2000);

set_P15;

LCD_goto(0, 9);

LCD putstr("W Addr:");
LCD_goto(@, 1);
LCD_putstr("W Data:");

for(s = 0; s <= 9; s++)

{
val[o] = s;
write_data_flash((s + BASE_ADDRESS), val, 1);
delay ms(10);
lcd _print_i(11, ©, (s + BASE_ADDRESS));
lcd_print_c(13, 1, val[@]);
delay ms(600);

}

while(1)
{
}s

void lcd_print_c(unsigned char x_pos, unsigned char y_pos, unsigned char
value)
{

LCD_goto(x_pos, y_pos);

LCD putchar((value / 100) + 0x30);

LCD_goto((x_pos + 1), y_pos);

LCD_putchar(((value % 10) / 10) + 0x30);

LCD_goto((x_pos + 2), y_pos);

LCD putchar((value % 10) + 0x30);

lcd print_i(X_pos,

LCD_goto(x_pos, y_pos);

LCD putchar((value / 10000) + 0x30);
LCD_goto((x_pos + 1), y _pos);
LCD_putchar(((value % 10000) / 1000) + 0x30);

LCD_goto((x_pos + 2), y_pos);

LCD putchar(((value % 1000) / 100) + 0x30);
LCD_goto((x_pos + 3), y_pos);
LCD_putchar(((value % 100) / 10) + ©x30);
LCD_goto((x_pos + 4), y_pos);

LCD putchar((value % 10) + 0x30);

Schematic
-
Wi P05 LY po SIAIN4/TONCEPWM? IC3/PWM3STADC/AINS/P0 4 2l P04 g sl
L0621 po.6/AINTXD AINGICSPWMS/P0.3 fl—T03 g spa
2 P07 3.f pga/amNaRXD [SCLYRXD_1.OCDCK/ICPCK/P0.2 fel8 P02
IK £20 =4 p2.0/RsT MISO/AC4/PWM4/P0.1 ekl — PO
=—C2 15? —P30__ 3} p30/AINI/OSCININTO TIMOSIICYPWM3P0.0 kb P00
0.1uf +SW$B_£E*—jwawMMMNH SPCLKACYPWM2/PL0 S — P10
I —GND 7} Ghp CLO/AINTAC/PWMIPL1 fedd—FIL
L —PI6 8.1 b 6/OCDDAICPDA/TXD_I[SDA] 1coPwMmorp1 2 el — P12
GND V3 9 8 vnp [STADCI/FB/SDAPI 3 ft2 P13
PIS 101 py 5/88/1CTPWMS PWMI/FB/SDA/P 4 fabl—T14
N76E003
Explanation

To write and read data from flash we can use the following functions:

write_data_flash(ulé_addr,

read_data_flash(ulé_addr,

Both of these functions are pointer-based functions. The first parameter of these function is the
physical location of data, the second argument is the data pointer itself and the last argument is the
number of bytes to read/write. Try to use the upper addresses of the flash where application code
usually doesn’t reside. Reading the flash doesn’t require any involvement of IAP while writing does
require IAP. The functions are self-explanatory and can be used readily without any changes since they
are provided in the BSP examples.

In the demo, ten data bytes are saved in ten separate locations starting from location 3700 to 3709.
Prior to that these locations are read. On first start up, these locations have no saved data and so they
show up garbage values (205/255 usually). When a valid user data is saved, the location is updated
with it. When reset or powered down, the newly written data bytes are retained and reread when
powered up again.

Try not to frequently write on the flash since flash memories wear on frequent writes. Use a RAM-
based buffer and try to write one page of flash when the buffer is full. In this way, flash memory wear-
and-tear is slightly reduced.

Be careful about saving locations. Don’t use locations that hold application code. Try to use

unoccupied empty flash locations or upper flash addresses. Use the NuMicro ISP Programming Tool
for finding empty locations.

Demo

o
'y I .gl. m“mu

=) 'ﬂ‘ :
¥ |8 % -I'Ii[li{ﬁ{
A" iy

= ol (T | TEam |
Pl il g T fall. [T |

o i = e A

Demo video: https://youtu.be/b2iH-DCTfqU

https://youtu.be/b2iH-DCTfqU

Overview of N76E003 Timers

Since N76E003 is based on 8051 architecture, many of its hardware features will have similarities with
a standard 8051 microcontroller. The timers of N76E003 have such similarities but keep in mind that
similarities don’t mean same. Strictly speaking in N76E003, there six timers and these are:

e TimerOandTimer1l

These are both 16-bit general purpose timers with four modes of operation. With these
modes we can allow the timers to operate as general purpose 8-bit auto-reloading timers,
13-bit and 16-bit timers. Most commonly the 16-bit timer mode (Mode 1) is used as it is the
simplest mode available. Additionally, we can take outputs of these timers. Unlike typical
8051s, we can use chose from Fsys, fixed and prescaled Fsys (Fsys / 12) or external input as
timer clock sources.

e Timer?2

Timer 2 is different from Timers 0 and 1 in many aspects. Mainly it is used for waveform
captures. It can also be used in compare mode to generate timed events or compare-match-
based PWM. It has auto-reloading feature unlike Timers 0 and 1.

e Timer3

Timer 3 is an auto-reloading 16-bit timer with no output and Fsys as clock source. Like Timer
1, Timer 3 can be used for serial communication hardware (UART).

e Self-Wake Up Timer (WKT)

The self-wake-up timer or simply wake-up timer is a special event timer that is not available
in standard 8051s. The purpose of this timer is to wake-up or restore the normal working of a
N76E003 chip from low power modes after a certain period of time. It can also be used to
trigger timed events or trigger other hardware.

e Watchdog Timer

The watchdog timer of N76E003 can be used either as a 6-bit general purpose timer or as a
standard watchdog timer. Most commonly it is not used as a general-purpose timer because
that is not what it is meant to be. In watchdog mode, it helps in recovering a stuck N76E003
micro by resetting it.

While using BSPs be careful about timer-based delay routines and UART routines. These built-in
routines reset and reconfigure timers according to their purposes. Make sure that there is no
conflicting issue when using them. To avoid such conflict, either use software delay routines or one
dedicate timer for a particular job. For instance, use Timer 1 for delays and Timer 3 for UART. You have
to know what you are doing and with which hardware.

Timer O — Time base Generation

Time-base generation is one of the most basic function of a timer. By using time-bases, we can avoid
software delays and unwanted loops when we need to wait or check something after a fixed amount
of time. BSP-based delay functions are based on this principle.

Here in this section, we will see how to create a time-base to toggle P15 LED.

TOM (CKCOM.3)
{T1M (CKCOMN.4))

112
o —
Fava + |1 CiT
o
TLO (TL1)

T1
il I
To e T

LHi'l [T T T T I7Ha*{ 1 b Timer intemupt
TRO (TR1) — 0 (TE1)

iy
GATE — —*T0 (T1) pin
TOOE (P252) }E

I (INT1) pin (TTOE(PZ5.3))

Code

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

setup()
set_clock_source(clock_source);

disable clock_ source(clock _source);
set_clock_division_factor(value);
set_Timer_0(value);

get_Timer_0()

main(

{
setup();

while(1)

{
if(get _Timer_0() < 32767)
{

P15

setup()

disable clock source(ECLK);
set _clock source(HIRC);
set clock division factor(89);

P15 PushPull Mode;

set_ToM;

TIMERO MODE1_ ENABLE;
set_Timer_0(0);
set_TRO;

set_clock_source(clock_source)

{

switch(clock source)

{
case LIRC:

{
set 0SC1;

clr 0SCo;

break;

}

case ECLK:

{
set EXTEN1;
set EXTENO;
while((CKSWT & SET_BIT3) ==

clr_0SC1;
set_0SCo;

break;

}

default:
{
set_HIRCEN;
while((CKSWT & SET_BIT5) ==

clr 0SC1,;

}

{

}

while((CKEN & SET_BIT@) == 1);

disable clock_source(

switch(clock source)

{
case HIRC:

{
clr HIRCEN;

break;

}

default:

{
clr EXTEN1;

clr EXTENO;
break;

set _clock division factor(

CKDIV = value;

set_Timer_0(value)

THO = ((value & OXxFF@Q) >> 8);
TLO (value & OxPOFF);

get_Timer_0()

value = 0x0000;
value = THO;
value <<= 8;

value |= TLO;

return value;

clock_source)

Schematic

.
s —B L] posiamamoncerwa2 IC3/PWM3/STADC/AINS/P0.4 ol — 0L

—06 2 poeraNTXD AINGACS/PWMS/P03 et —T03

2 —07 3 poysamNzRXD [SCLYRXD_1.0CDCK/ICPCK/P0.2 fatS— P02

IK P20 4] promst MISO/CA/PWM4Po.1 ekl —FOL

J—cz Lr, 05k p3o/aINIOSCINNTO TIMOSUICHPWM3/P00 farté— P00
ot 4 SW-PE M7 & p1gamonnT SPCLK/AC2PWMYPLO fedd— P10
—SND 7} G CLOAINTACPWMI/PL 1 freld— PIL

L —P16 8] b1 6/0CDDANCPDA/TXD_I[SDA] ICoPwMopL 2 el — P12
GND Vi 9 1 ypp [STADCJ/FB/SDA/PL3 el P13
P15/SSACTPWMS PWMIFB/SDAPL 4 fatl — P14

NT6E003

Explanation

For demoing time-base generation, we don’t need any additional hardware since we will just be
blinking P15 LED without software-based delays.

Before | start explaining the code example, | would like to discuss how Timer 0 and 1 works in Mode
1. In Mode 1, these timers behave like up-counting 16-bit timers. This means they can count (contents
of TL and TH registers) from 0 to 65535 with every pulse/clock tick. There is no down-counting feature
in these timers.

The source of these pulse/clock ticks can be from system clock, prescaled system clock or from
external inputs. When external inputs are used, these timers can be used like counters. Unlike
conventional 8051, there are options to take output from timers. The outputs change state with
overflows/rollovers, i.e. when the timer counts resets from 65535 to 0.

In the setup function, we do a couple of things. First, we setup the system clock source to 100kHz with
HIRC as clock source. P15 is set as an output. Timer 0 is used and so there a 0 in timer setups. Timer 0
is clocked with system clock, i.e. 100kHz and so one tick is:

1
Timer Tick = = 10us

Fsys 100kHz
In Mode 1, the timer will reset/overflow after:

65536 x 10us = 655ms

provided that the initial count of the timer was set to 0. This is what we are doing in the set up. After
setting the timer’s count and the mode of operation, the timer is started.

disable clock source(ECLK);
set _clock source(HIRC);
set_clock division_factor(80);

P15 _PushPull Mode;

set_ToM;
TIMERO_MODE1_ENABLE;
set_Timer_0(0);
set_TRO;

Functions set_Timer_0 and get_Timer_0 writes Timer 0’s count and reads Timer 0’s count
respectively.

set_Timer_0(value);
get _Timer 0();

It is needed to toggle the state of the P15 LED and yeah, that is done at every half count of the timer,
i.e. at every 327mes. In the main, the timer’s count is checked using get_Timer_0 function. When the
timer’s count is less than 32767 counts, P15 LED is held high. P15 LED is set low when the timer’s count
is greater than this 32767. In this way the toggling effect is achieved without software delays.
However, the timer’s count is frequently polled.

if(get_Timer_0() < 32767)
{
}
else

{
}

P15 = 1;

Demo

8s i 1.524 Hz @ D.6564 5

=
i
 —

L

Demo video: https://youtu.be/lJvFhdL24B8

https://youtu.be/IJvFhdL24B8

Timer 1 — Stopwatch

We have already seen the operation of general-purpose timers in Mode 1. In this segment, we will
how to use these timers in Mode 0. Everything is same between Mode 0 and 1. However, the timer
counts or resolutions vary in these modes. Mode 0 makes general purpose timers behave as 13-bit
timer/counters.

TOM (CKCON.3)
(T1M (CKCON.4))

12 =
Fsys { %cﬁ
o
1
‘ 4 TLO (TL1)
TO (1) pin - o[[[[¢[[]7]

-

ol [[T [T [7he» (;E?) —» Timer Interrupt
TRO (TR1) h THO (TH1)
CGATE L > T0 (T1) pin
__ %>(;|—T TOOE (P25.2) X
INTO (INTT) pin ——/ (T10E(P25.3))

Check the block diagram shown above and compare with the one previously shown. Note the greyed-
out part in this diagram. The upper bits of TL registers are not used in this mode. Between Mode 0 and
1, personally Mode 1 is easier than Mode 0.

Here Timer 1 in Mode 0 is used to create a digital stopwatch.

Code

"N76E@03_iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

"LCD_3 Wire.h"

set_clock_source(clock_source);
disable clock_source(clock_source);
set _clock division factor(value);
set Timer_ 1 for Mode 0(value);
get Timer_1 for_ Mode 0()
print_C(X_pos, y_pos, value);
print_ I(X_pos, y_pos, value);

= Ox1B
__interrupt Timerl ISR ()

{
set Timer_ 1 for Mode 0(0x1D64);

ms++;

if(ms == 499)
{

toggle = ~toggle;
}

if(ms > 999)
{

ms = 0;
sec++;

if(sec > 59)
{

sec = 0;
min++;

if(min > 59)
{
min = 0;
hrs++;

if(hrs > 23)

{
hrs = 0;

}

txt[] = {"Nu Stopwatch"};
setup();

LCD_goto(2, 9);
LCD_putstr(txt);

while(1)

if(PO5 == 1)
{

set_ET1;

set_EA;

set_TR1;

set Timer 1 for Mode 0(0x1D64);
}

if(PO6 == 1)
{
clr ET1;
clr EA;
clr TR1,;
toggle = 0;
¥

if((PO5 == 1) && (P06 ==
{

clr ET1;

clr EA;

clr TR1,;

ms = 0;
sec =
min

hrs

toggle = 0;
set Timer 1 for Mode 0(0x1D64);

print_C(2, 1, hrs);
print_C(5, 1, min);
print_C(8, 1, sec);
print_I(11, 2, ms);

if(!toggle)
{

LCD_goto(4, 1);
LCD_putchar(':");
LCD_goto(7, 1);
LCD_putchar(':");
LCD_goto(10, 1);
LCD_putchar(':");

¥

else

{
LCD goto(4, 1);
LCD_putchar(' ');
LCD_goto(7, 1);
LCD putchar(' ');
LCD goto(1e, 1);
LCD _putchar(' ');

setup()

disable clock_ source(ECLK);
set _clock source(HIRC);
set _clock division factor(1);

PO5_ Input_Mode;
PO6 Input Mode;

clr TIM;
TIMER1_MODEO_ENABLE;
set_Timer_1 for Mode 0(0x1D64);

LCD init();
LCD_clear_home();

set_clock source(clock source)

{

switch(clock_source)

{
case LIRC:

{
set_0SC1;
clr_0SCo;

break;

}

case ECLK:

{
set_EXTEN1;

set_EXTENO;
while((CKSWT & SET_BIT3) ==

clr 0SC1;
set_0SCo;

break;

}

default:

{
set_HIRCEN;

while((CKSWT & SET BIT5) == 0);

clr_0SC1;
clr 0SCo;

while((CKEN & SET_BIT@) == 1);

disable clock source(

switch(clock_source)

{
case HIRC:

{
clr HIRCEN;

break;

}

default:

{
clr EXTEN1;

clr EXTENO;
break;

}
}

set_clock_division_factor(

CKDIV = value;

set_Timer_1 for_ Mode 0(

TL1 (value & Ox1F);
TH1 ((value & OxFFEQ) >> 5);

get_Timer_1 for_Mode_0(

hb = 0x00;
1b = 0x00;
value = 0x0000;

value = TH1;
value <<= 8;
value |= TL1;

lb = (value & Ox001F);
hb = ((value & OxFFE@) >> 5);

value

clock source)

value <<= 8;
value |= 1b;

return value;

print_ C(X_pos,
LCD_goto(x_pos, y_pos);
LCD_putchar((value / 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);

LCD putchar((value % 10) + 0x30);

print_I(X_pos,
LCD_goto(x_pos, y_pos);
LCD_putchar((value / 100) + 0x30);
LCD_goto((x_pos + 1), y_pos);

LCD putchar(((value % 100) / 10) + 0x30);

LCD_goto((x_pos + 2), y_pos);
LCD_putchar((value % 10) + 0x30);

IC3/PWM3/STADC/AINS/PO.4
AING/ICS/PWMS/P0.3
[SCLYRXD_1.OCDCK/ICPCK/P0.2
MISO/IC4/PWM4/PO. 1
TI/MOSIIC3/PWM3/P0.O
SPCLK/ICZ/PWM2/P1.0
CLO/AINTICI/PWMI/P1.1
ICO/PWMO/PL.2
[STADC]/FB/SDA/P1.3

PWMI/FB/SDA/P1 4

Schematic
17
POS 1 : .
s St 0—28——Le] po S/AINATOICEPWM?
v
stop ©—228 2] pg 6/AIN/TXD
) X
Rz P07 3 pgyaNumxD
1K p20 a4l
57 ¥ P2.O/RST
_LSWPB l —B30__ 3.} p3o/AINIOSCINANTO
&mf+ P17 S p17/AINO/INTI
GND 7 ¥ Gnp
L —P16 8. p1 6/0OCDDA/ICPDA/TXD_I[SDA]
GND VAN [
PIS 1 ,
—F 10 pys/SSACTHPWMS
NT6E003
Explanation

Firstly, let us inspect the setup code:

disable clock source(ECLK);
set _clock source(HIRC);
set_clock_division_factor(1l);

PO5 Input Mode;

PO6 Input Mode;

clr TIM;

TIMER1 _MODE© ENABLE;
set Timer 1 for Mode 0(0x1D64);

The system clock is set to 8MHz using HIRC. As per schematic and code, two buttons labelled Start
and Stop are connected with PO5 and P06 respectively. Timer 1 is set up in Mode 1 with prescaled
system clock source (Fsys / 12). Thus, it has an input clock frequency of 666.67kHz. Thus, one timer
tick is 1.5us. To get the timer overflow and reset every 1 millisecond we will need:

ims
—— = 667 counts
1.5us

Since the timer is an up-counting timer and has a resolution of 13-bits, it will overflow after 8191
counts. Thus, to get 667 counts, we need to set is at:

(8191 — 667) = 7524 or 0x1D64 counts

The timer is, therefore, set at this count value.
Now how do we set the timer in Mode 1?

Check the register diagram below. The grey part is what is ignored. Remember that TL and TH are 16-
bits as a whole but out of that we will just be using 13-bits.

7 0 7 0

THO (TH1) TLO (TL1)

In our case, the count 0x1D64 is segmented as the following in binary:

0001 1101 0110 0100

This number is masked as follows:

gnored

‘ OxEB Ox04
00071 1101 011 00100
THx

Tlx

All of these is done by the following function:

set_Timer_1 for_Mode 0(
{

TL1 = (value & Ox1F);
TH1 = ((value & OxFFEQ) >> 5);

}

Reading the time is doing just the opposite of writing and this is accomplished by the following
function:

get Timer_1 for_ Mode 0(

hb 0x00;
1b = 0x00;
value = 0x0000;

value = TH1;
value <<= 8;
value |= TL1;

1b (value & 0x001F);
hb = ((value & OXFFE@) >> 5);

value = hb;
value <<= 8;
value |= 1b;

return value;

Unlike the previous example, here interrupt is used to keep time. The timer run bit, global interrupt
and Timer 1 interrupt are all enabled when the start button is pressed and are all disabled when the
stop button is pressed or the stopwatch is reset by pressing both buttons.

if(PO5 == 1)
{

set_ET1;

set EA;

set_TR1;

set_Timer_1 for_Mode_ 0(0x1D64);
}

if(Pe6 == 1)

{
clr ET1,;
clr EA;
clr_TR1;
toggle = 0;

}

if((PO5 == 1) && (P06 == 1))
{

clr ET1;

clr_EA;

clr_TR1;

ms = 0;
= 0;
@.
(%]

3

toggle = 0;
set_Timer_1 for Mode 0(0x1D64);

Inside the interrupt subroutine, the time keeping is done:

= Ox1B
__interrupt Timerl ISR ()

{
set Timer_ 1 for Mode 0(0x1D64);

ms++;

if(ms == 499)
{

toggle = ~toggle;
}

if(ms > 999)
{
ms = 0;
sec++;

if(sec > 59)
{

sec = 0;
min++;

if(min > 59)
{
min = 0;
hrs++;

if(hrs > 23)

{
hrs = 0;

At every timer overflow interrupt the timer’s counter is reset to 0x1D64 to make sure that there are
667 counts before the overflow.

The time data is displayed on an LCD screen.

Demo

il - iy

il -Hﬂ~ ['Hll nIIJh
=i ‘=mi.

b il

Demo video: https://youtu.be/egzuPC8Yox4

https://youtu.be/egzuPC8Yox4

Timer 2 Input Capture — Frequency Counter

Timer 2, as | stated before, is different in many areas from the other timers of N76E003. In my
opinion, it is best suited for measuring pulse widths, their periods and thereby frequencies. In other
words, it is the best wave capturing tool that we have in N76E003s.

I | co coH |
F Y
CAPFQ
- CAPFO
- A
CAPD »| Noise o1 CAPH Input Capture Interrupt
Filter >\
cAP1 CAPF2
ENFO [10] A
- (CAPCON2.4) CAPEND
capoLspio] _* (CAPCOND.4)
(CAPCONA[1:0])
Input Capture 0 Module
Input Capture 1 Module |
Input Capture 2 Module. |
Input Capture Flags (CAPF[2-0])
EAPEY
CMPCR
CAPF2 Clear Timer 2 Clear (T2MOD.2)
cAPCR!" Counter
(T2MOD.3)
Clear Timer 2
| Fays I—bl Pre-scalar L2 TH2 1
| | TF2 —» Timer 2 Interrupt
T2DIV[2:0] TR2 1 d
(T2MOD[6:4]) (T2CON.2)
CAPFD _b =
CAPF1 \
CAPF2 LDEN" 3
LDTS[1:0] (T2MOD.7)
(T2MOD[1:0])
| rempaL | reme2d |
Timer 2 Module

[1] Once CAPCR and LDEN are both set, an input capture event only clears TH2 and TL2 without reloading RCMP2H and RCMP2L contents

Unlike conventional 8051s, there varieties of option to capture wave or generate compare-match

events.

In this segment, we will see how to make a frequency counter with Timer 2’s capture facility. We will
also see how to generate Timer 1’s output.

Code

"N76E@03_iar.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

"LCD_3 Wire.h"

#define timer_ clock speed 8000000.

unsigned long overflow =
unsigned long pulse time = 0;
unsigned long start_time = ©
unsigned long end time = 0;

.
)

setup(void);

set_clock_source(unsigned char clock_source);

disable clock source(unsigned char clock source);

set _clock division factor(unsigned char value);

setup GPIOs(void);

setup_Timer_1(void);

setup_Timer_2(void);

setup capture(void);

set Timer 1(unsigned int value);

lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned long value);

#pragma vector = Ox1B
__interrupt void Timer_ 1 ISR(void)
{

set Timer_1(90);

}

#pragma vector = Ox2B
__interrupt void Timer_2_ISR(void)
{

clr_TF2;

overflow++;

}

#pragma vector = 0x63
__interrupt void Input_Capture_ISR(void)
{
if((CAPCONO & SET BITO) != 0)
{
clr_CAPFO;
end_time = COH;
end_time <<= 8;
end_time |= COL;
pulse time ((overflow << 16) - start_time + end_time);
start_time = end_time;
overflow = 0;

void main(void)

{
register float f = 0.0,

setup();

LCD init();

LCD_clear_home();

LCD_goto(1, 9);

LCD putstr("Nu Freq. Meter");
LCD_goto(0, 1);
LCD_putstr("Freq./Hz:");

while(1)

{
f = (timer_clock speed / ((float)pulse time));
lcd print(11, 1, ((unsigned long)f));
Timer@ Delaylms(100);

}s

void setup(void)

{
disable clock source(ECLK);
set_clock_source(HIRC);
set_clock_division_factor(1);
setup_GPIOs();
setup_capture();
setup Timer_ 1();
setup_Timer_2();
set EA;

void set_clock_source(unsigned char clock_source)

{

switch(clock_source)

{
case LIRC:

{

set_0SC1;
clr_0SCo;

break;

}
case ECLK:
{
set EXTEN1;
set _EXTENO;
while((CKSWT & SET_BIT3) == 0);

clr 0SC1;
set_0SCo;

break;

default:

{
set HIRCEN;

while((CKSWT & SET_BIT5) == 0);

clr 0SC1;
clr_0SCo;

break;

}
}

while((CKEN & SET_BIT@) == 1);

}

disable clock_source(

{

switch(clock source)

{
case HIRC:

{
clr HIRCEN;

break;

}

default:

{
clr EXTEN1;
clr EXTENO;
break;

set_clock_division_factor(
{
CKDIV = value;

}

setup_GPIOs(
{
PO PushPull Mode;
P12_Input_Mode;
}

setup_Timer_1(
{
set_T1M;
TIMER1_MODE1_ENABLE;
set _Timer_1(0);

clock_source)

P2S |= SET_BIT3;
set_TR1;
set_ET1;

setup_Timer_2(
T2CON &= ~SET_BITO;
T2MOD = 0x00;

set_TR2;
set_ET2;

setup_capture()

ICO P12 CAPO_FallingEdge Capture;
set ECAP;

set Timer_ 1(value)

TH1 = ((value && OXFFOQ) >> 8);
TL1 = (value & OXOOFF);

lcd_print(X_pos,

LCD_goto(x_pos, y_pos);

LCD_putchar((value / 10000) + 0x30);

LCD _goto((x_pos + 1), y pos);
LCD_putchar(((value % 10000) / 1000) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar(((value % 1000) / 100) + 0x30);
LCD_goto((x_pos + 3), y_pos);

LCD _putchar(((value % 100) / 10) + 0x30);

LCD _goto((x_pos + 4), y pos);
LCD_putchar((value % 10) + 0x30);

Schematic

"
Wi —P05 LY po.5/AING/TOCEPWM2 IC3/PWM3/STADC/AINS/P0.4 a2l — PU o <7p
P06 2. pogamvTxD AINGICS/PWMS/P0.3 ek — P03 g scx
2 P07 3. poyamN2/RXD [SCLYRXD_1.OCDCK/ICPCK/P0.2 8 — P02 g spo

= IK P20 by p2omst MISO/ICA/PWM4/P0.1 ekl — POL
::Czsw_ml —P30 5.} p30/AINI/OSCINNTO TI/MOSIICHPWM3/P0.0 MJJT

0 1uf P17 6 py 7/AINO/ANTI SPCLK/ACPWM2/PLO ot — P10

I —GND 7§ G CLO/AINTACHPWMIPL1 fadd—EIL
L —P16 8.1 p16/0CDDAICPDA/TXD_1[SDA] icopwmorp 2 i — P12

GND 3¥3_ 9 1 vpp [STADC/FB/SDA/PI 3 fal2 P13

—PI5 104 p) ss8107PWMS PWMI/FBISDAP] 4 bl — P14

N76E003
Explanation

Before explaining the capture part, | would like to put emphasis on how to generate Timer 1’s output.
The setup for timer is nothing different from other timer settings in Mode 1 except for the part shown
below:

P2S |= SET BIT3;

This code sets the timer output. Note that in this example, the system clock speed and hence the clock
speed of all hardware sub-systems is set to 8MHz with HIRC and clock divider. Thus, Timer 1’s output
will be high for:

65536

— =8.192ms
8MHZz

and low for the same amount of time. So, the total time period of Timer 1’s output is roughly 16ms.
Therefore, the frequency of this output is about 60Hz.

POO is the Timer 1’s output pin and P12 is the capture pin of Timer 2. When P00 and P12 are shorted
together, the frequency counter made here with Timer 2 and its capture unit will read 60Hz.

So how it is done by Timer 2 and the capture unit?

Here in this example, we don’t need the compare-match feature for the measurement of waveform
timings and so all compare match features are disabled. We need to reload the timer when it
overflows. Since the timer’s counter registers are not manipulated, they are set to zeros by default
and so the reload count is zero. These are reflected by the first two lines of the timer’s setup:

setup_Timer_2(

{
T2CON &= ~SET_BITO;

T2MOD = 0x00;

set_TR2;

set_ET2;

}

Next, Timer 2 is started with its interrupt enabled.

Finally, the capture pin and its channel to be used are enabled using BSP-based definition. Capture
interrupt is also enabled.

void setup capture(void)

{
ICO_P12 CAPO_FallingEdge Capture;
set ECAP;

}

Note that this is the confusing part of the code. There are three capture channels (CAPO, CAP1 and
CAP2). These channels share 9 input capture GPIO pins. The pins are cleverly multiplexed. Detection
edge selections can be also done. The BSP definition-names state these parameters. For example, the
definition used here means:

“input capture pin 0 connected to P12 GPIO pin is connected to capture channel O to detect falling
edge transitions”.

Once the hardware setup is complete, the game now resides in the capture interrupt part:

#pragma vector = 0x63
__interrupt void Input Capture ISR(void)
{
if((CAPCONO & SET _BITO) != 0)
{
clr_CAPFO;
end_time = COH;

end_time <<= 8;
end_time |= COL;
pulse time = ((overflow << 16) - start_time + end_time);

start_time

= end_time;
overflow = 0;

Since there is one interrupt vector for all three capture channels, we have check first which capture
channel caused the interrupt and clear that particular interrupt flag soon. Capture interrupt, in this
case, occurs when a falling edge is detected by CAPO channel. When such an interrupt occurs, the time
of its happening, i.e. the counter value of Timer 2 at that instance is stored. This marks the first falling
edge event. To measure period or frequency of a waveform, another such falling edge is needed.
Therefore, when another falling edge is detected by the capture hardware, the process repeats. This
results in the time capture of two events.

We know the frequency of the timer’s clock and so we can find the value of its each tick. We have two
captures in form of two Timer 2 counts. We can find the difference between them and thereby
compute the time period (pulse_time).

Since the time period of the captured waveform is calculated, its frequency can be deduced. This is
done in the main loop.

f = (timer clock speed / (()pulse time));

Demo

bl il
¥ !l e !Iq- bl -
b+ il ™ wblls J;“F L JE i
- m M 3 - v H 3 i -

Demo video: https://youtu.be/33IRj7zE1IM

https://youtu.be/33lRj7zE1JM

Timer 2 Pulse Width Capture — Interfacing HC-SR04 SONAR

In the last segment, it was demonstrated how to capture a waveform and compute its frequency using
Timer 2’s capture hardware. This segment is basically an extension of the last segment. Here, it will be
shown how we can use two capture channels connected to the same capture pin to find out the pulse
width of a pulse. For demoing this idea, a HC-SR04 ultrasonic SONAR sensor is used. The SONAR sensor
gives a pulse output that varies in width according to the distance between the sensor and a target.

"N76E003.h"
#include "SFR _Macro.h"
#include "Function define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_3 Wire.h"

#define HIRC
#tdefine LIRC
#tdefine ECLK

pulse width = 0;

setup()

set_clock_source(clock_source);
disable clock_source(clock_source);
set_system_clock frequency(F_osc,
setup GPIOs();

setup _Timer_ 2();

setup_capture(void);

set_Timer_2(unsigned int value);

set Timer 2 reload compare(unsigned int value);

lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned int value);

void Input_Capture_ ISR(void)
interrupt 12

{
if(CAPCONO & 0x01)

{
clr CAPFO;

}

if(CAPCONO & 0x02)

{
clr CAPF1;

pulse_width = C1H;
pulse_width <<= 8;
pulse width |= CiL;

void main(void)

{

unsigned int range = 0O;

LCD_init();

LCD clear home();
LCD_goto(0, 9);
LCD_putstr("Pamge/cm:");
LCD_goto(@, 1);
LCD_putstr("Pulse/us:");

setup();

while(1)

{
set_P11;
Timer3 Delayl@us(1);
clr P11,

range = ((unsigned int)(((float)pulse width) / 58.0));

lcd_print(11, @, range);
lcd_print(11, 1, pulse_width);
Timer@_Delaylms(9090);

void setup(void)

{
disable clock source(ECLK);

set_clock source(HIRC);
set_system clock frequency(16, 16);
setup GPIOs();

setup_capture();

setup_Timer 2();

set_EA;

set_clock_source(clock_source)

switch(clock source)

{
case LIRC:

{
set_0SC1;

clr 0SCo;

break;

}

case ECLK:

{
set EXTEN1;

set_EXTEN®;
while((CKSWT & SET_BIT3) == 0);

clr 0SC1;
set _0SCo;

break;

}

default:

{
set_HIRCEN;

while((CKSWT & SET BIT5) == 0);

clr_0SC1;
clr_0SC0;

break;

}
}

while((CKEN & SET_BIT@) == 1);
}

disable clock source(clock _source)

{

switch(clock_source)

{
case HIRC:

clr HIRCEN;
break;

}

default:

{
clr EXTEN1;

clr EXTENO;
break;

set_system_clock frequency(

{
F_osc = (F_osc / (6x02 * F_sys));

if((F_osc >= 0x00) && (F_osc <= OxFF))
{

}

CKDIV = (()F_osc);

setup GPIOs(

P11 _PushPull Mode;
P12_Input_Mode;

setup_Timer_ 2()

set_Timer_2 reload_compare(0);
set_Timer_2(0);

set_LDEN;

T2MOD |= 0x01;

T2MOD |= 0x20;

set_TR2;

setup_capture(

CAPCONO = 0x30;
CAPCON1 = oxe1;
CAPCON2 0x30;
CAPCON3 = 0x00;
CAPCON4 = 0x00;
set_ECAP;

set_Timer_ 2(

(value & Ox@OFF);
((value & OxFF@Q) >> 0x08);

set_Timer_2 reload_compare(

RCMP2L
RCMP2H

(value & Ox00FF);
((value & OxFF@O) >> 0x08);

lcd print(X_pos,

LCD_goto(x_pos, y_pos);
LCD_putchar((value / 10000) + 0x30);

LCD_goto((x_pos + 1),
LCD putchar(((value %
LCD_goto((x_pos + 2),
LCD_putchar(((value %
LCD_goto((x_pos + 3),
LCD putchar(((value %
LCD_goto((x_pos + 4),
LCD_putchar((value % 1

y_pos);

10000) / 1000) + 0x30);
y_pos);

1000) / 100) + 0x30);
y_pos);

100) / 10) + 0x30);
y_pos);

@) + 0x30);

Schematic
17
) , ,
Vi —P0S LY po s/AING/TONCEPWM2 IC3/PWM3/STADC/AINS/P0.4 a2l — L0 g s7p
3y
2062y po.6/AINTXD AINGACSPWMS/P0.3 fel—L% g scx
2 3 o)
R2 P07 3. po/aN2RXD [SCLYRXD_1.OCDCK/ICPCK/P0.2 futd— P02 g spo
N K P20 4.0 p)omst MISO/C4/PWMA/PO. 1l —POL
.__CSW*BI P30 5k p3 0/AINI/OSCINANTO TUMOSHICHPWM3/P0.0 flak® P00
out + P17 64 p) 7/AINOANT] SPCLKACYPWM/PL o ot — P10
3 HC-SR04
o
T —SND__ 7 ¥ G CLOAINTACTPWMI/PL | fati—Lll g
* P16 Q 13 P12 Trigger
L —1° &4 p16/OCDDA/ICPDA/TXD_1[SDA] 1Co/PWMOP1 2 faei——12
= . . Echo
GND V3 9 R vpp [STADC]FB/SDA/P1 3 a2 — P13
PIS 10 py sissicupwwms PWMI/FB/SDA/P1 4 ol — P14
N76E003
Explanation

HC-SR04 SONAR sensor has two pins apart from power supply pins. These pins are labelled “Echo” and
“Trigger”. When the trigger pin of a HC-SR04 is set high for about 10us, it acknowledges this short
duration pulse in the trigger pin as a command from its host micro to measure and return distance

data.

Initiate Echo back

]
10uS|TTL to signal pin pulse width corresponds to distance
{about 150uS-25ms, 38ms if no obstacle)
Signal — Eeh
Trigger CRS
99 Formula:

pulse width (uS) /58= distance (cm)

pulse width (uS) /148= distance (inch)
Internal

Ultrasonic Transducer will issue 8 40kHz pulse

P11 is setup as the trigger pin and P12 is set up as the echo pin. The concepts of input capture are
same as in the last capture example but there are a few minor changes. Firstly, the system clock speed
is set to full 16MHz using HIRC. Secondly, the setup of Timer 2 is slightly changed. Auto-reloading is
enabled this time. Timer 2’s clock is prescaled to 1MHz. This is done so in order to make sure that the
capture has a resolution of 1us and the timer doesn’t overflow while taking measurements. The
maximum possible width of a pulse from HC-SR04 is 38ms when no obstacle is detected by it but with
this timer setup we can measure pulse widths up to 65ms. Timer 2 is also set up as to reset its count
when a CAPO event occurs.

setup Timer 2()

set_Timer_2_reload_compare(0);
set_Timer_2(0);

set_LDEN;

T2MOD |= 0x01;

T2MOD |= 0x20;

set_TR2;

In order to measure pulse widths, we can use one capture channel in both edge capture mode or use
two capture channels connected to the same input capture GPIO pin detecting different edges. The
latter is used here.

setup_capture(

CAPCON® = 0x30;
CAPCON1 = 0x01;

CAPCON2 = 0x30;
CAPCON3 = 0x00;
CAPCON4 = 0x00;
set ECAP;

| didn’t use BSP-based definitions for setting up captures in this example because of some limitation.
BSP-based definitions reset selections. This is why | configured the input capture control registers
manually. Two capture channels having different edge detections are used and both of these channels
share P12 or ICO pin.

Now when HC-SR04 is triggered, it will give out a pulse. We have to measure the width of that pulse.
A pulse is defined by a rising edge and a falling edge. CAPO channel is set to detect the rising edge of
the pulse and reset Timer 2 to 0 count. CAP1 channel is used to detect the falling edge of the same
pulse and read Timer 2’s count. This count represents pulse width in microseconds.

Input_Capture ISR(
interrupt 12

{
if(CAPCON® & 0x01)

{
clr_ CAPFO;

}

if(CAPCON® & 0x02)

{
clr CAPF1;

pulse width = C1H;
pulse_width <<= 8;
pulse_width |= Ci1L;

In the main loop, distance is calculated using this measured pulse width time and the formula given in
HC-SR04’s datasheet.

range = (() ((()pulse width) / 58.0));

The distance found between an object and HC-SR04 is displayed on a text LCD.

Demo

Demo video: https://youtu.be/icGljSAh8SM

https://youtu.be/icGIjSAh8SM

Timer 3 — Driving 7 Segments, LED and Scanning Keypad

We all know that N76E003 is a cool chip but it lacks GPIOs unlike other chips of similar capabilities.
Thus, we must be miser while using GP1Os. When it is needed to interface several inputs and outputs
with a microcontroller using fewer pins, we often take the assistance of logic ICs like shift registers,
counters, multiplexers, etc. We have already used this technique while making the 3-wire LCD
interface. An LCD has its own controller(s) to take care of projecting data on the screen once data has
been feed to it. However, that’s not the case with seven segment displays and keypads when used
without any specialized driver IC like TM1640/MAX7219. It is, then, a job for a host micro to do the
scanning and data manipulation periodically with affecting other tasks. This can be achieved easily
with a timer.

In this segment, we will see how the aforementioned is done with Timer 3. For the demo, | used a
salvaged temperature controller’s I/O unit. The I/O unit consists of two 4-digit seven segment displays,
four LEDs and four push buttons. It is made with a 74HC164 Serial-In-Parallel-Out (SPI0) shift register
and a 74HC145 BCD-to-Decimal decoder. In order to use it in real-time, its displays, LEDs and buttons
should be scanned and updated at a fast rate without hindering any part of an application running in
main loop.

#include "N76E003 iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"

#include "Delay.h"

HIRC
LIRC
ECLK

GATE_HIGH set_P15
GATE_LOW clr_P15

CLK_HIGH set_P16
CLK_LOW clr_P16

A _HIGH set P00
A LOW clr_Poo

B_HIGH set_po1l
B_LOW clr_po1l

C_HIGH set_P@2
C_LOW clr_Po2

D _HIGH set_Po3
D _LOW clr PO3

SW P17

4
0

const unsigned char num[@x0A] = {OxED, Ox21, Ox8F, OxAB, 0x63, OxEA, OxEE,
OxAl, OXEF, OXEB};

unsigned char data values[0x09] = {Ox00, Ox00, Ox00, Ox00, Ox00, 0Ox00, 0x00,
0x00, 0x00};

unsigned char SW_in = 0;
unsigned char n = 0;

setup(void);
setup GPIOs(void);
setup_Timer_3(void);
set_Timer_3(unsigned int value);
unsigned int get_Timer_ 3(void);
void write 74HC164(register unsigned char value);

write 74HC145(channel);

show_LEDs(LED1_state, LED2_state,
LED3 state, LED4 state);

show_numbers (value, pos);

#pragma vector 0x83
__interrupt Timer3 ISR(

{
write 74HC164(data_values[n]);
write 74HC145(n);

n++;
if(n > 9)

setup();

while(1)

{
switch(SW_in)
{

case 1:

{
show_LEDs (1,

break;

}

case 2:

{
show_LEDs (0,
break;

}

case 3:

{
show_LEDs (0,
break;

}

case 4:

{
show_LEDs (0,

break;

SW in = 0x00;

i++;
J--5
if(i > 9999)
=@;
9999;

show_numbers(i, bot_seg);
show_numbers(j, top_seg);

Timerl Delayl@ms(40);
show LEDs(@, @, 0, 0);

setup()

setup_GPIOs();
setup_Timer 3();

setup GPIOs(

POO_PushPull Mode;
PO1 PushPull Mode;
PO2 PushPull Mode;
PO3 PushPull Mode;
P15 PushPull Mode;
P16_PushPull Mode;
P17_Input_Mode;

setup_Timer_ 3(
set_Timer_3(0OxF9CO);
set_ET3;

set_EA;
set_TR3;

set _Timer_ 3(

RL3 = (value & Ox@OFF);
RH3 = ((value && OxFF00)

get_Timer_ 3(

value = 0x0000;

value = RH3;
value <<= 8;
value |= RL3;

return value;

}

write 74HC164(

while(s > 9)

{
if((value & 0x80) != 0x00)

{
}
else

{
}

CLK_HIGH;
CLK_LOW;

GATE_HIGH;

GATE_LOW;

value <<= 1;
S--5

write 74HC145(channel)
0x00;

switch(channel)

{

case 0:

{
("nop");

if(SW == LOW)
{

}

break;

SW_in = 1;

case 1:

{
PO = Ox01;
break;

}

case 2:

{
PO = 0x02;
break;

}

case 3:

{
PO = 0x03;
break;

}

case 4:

{
PO = Ox04;
break;

}

case 5:

{
PO = 0x05;
break;

}

case 6:

{
PO = 0x06;
break;

}

case 7:

{

PO 0x07;

("nop");

if(SW == LOW)
{

}

break;

SW_in = 2;

if(SW == LOW)
{

SW_in =
}

break;

}

if(SW == LOW)
{

}

break;

SW in = 4;

show_LEDs(LED1_state, LED2_state,
LED3 state, LED4 state)

{
switch(LED1_state)

{
case HIGH:

{
data_values[8] |= 0x80;

break;

}
case LOW:

{
data_values[8] &=
break;
}
}

switch(LED2_state)

{
case HIGH:

{

data_values[8] |=
break;

¥
case LOW:

{
data_values[8] &=

break;
}
}

switch(LED3 state)

{
case HIGH:

{
data_values[8] |=
break;

}
case LOW:

{
data values[8] &=

switch(LED4_state)

{
case HIGH:

{
data_values[8] |= 0x02;

break;

¥
case LOW:

{
data_values[8] &= OxFD;

break;

void show numbers(signed int value, unsigned char pos)

{

register unsigned char ch = 0x00;

if((value >= 0) && (value <= 9))
{
ch = (value % 10);
data_values[(@ + pos)] = num[ch];

data_values[(1 + pos)] = 0x00;
data values[(2 + pos)] 0x00;
data values[(3 + pos)] 0x00;

}
else if((value > 9) && (value <= 99))

{
ch = (value % 10);
data_values[(© + pos)] = num[ch];
ch = ((value / 10) % 10);
data_values[(1 + pos)] = num[ch];
data_values[(2 + pos)] = 0x00;
data_values[(3 + pos)] = 0x00;

}
else if((value > 99) && (value <= 999))

{
ch = (value % 10);
data_values[(@ + pos)] = num[ch];
ch = ((value / 10) % 10);
data_values[(1 + pos)] = num[ch];
ch = ((value / 100) % 10);
data_values[(2 + pos)] = num[ch];
data_values[(3 + pos)] = 0x00;

}
else if((value > 999) && (value <= 9999))

{
ch = (value % 10);
data_values[(@ + pos)] = num[ch];
ch = ((value / 10) % 10);

data_values[(1 + pos)] = num[ch];
ch = ((value / 100) % 190);

data values[(2 + pos)] = num[ch];
ch = (value / 1000);
data_values[(3 + pos)] = num[ch];

.
va —P05 _ L.¥ po SIAINA/TONICE/PWM2 IC3/PWM3/STADC/AINS/P0.4 a2l PO
P06 Z.¥ po.g/AINTXD AINGICs/PWMS/P0 3 el — P8 g D
Rz P07 3. po 7/AIN2/RXD [SCLYRXD_1.0CDCK/CPCK/P02 S — P02 g ¢
= 1K P20 3.4 promst MISONCHPWMAPD.] el — PO g
=_C35W'Pq P30 5. b3 0/AINI/OSCINANTO TUMOSHIC3PWM3P0.0 el — P00 o o
0.1uf + W @g—LLL___ 6 p) yamonni SPCLK/ACPWM2/P1 0 k2 — P10
GND 7 ¥ 6ap cLOAINTACHPWMI/PL1 fedd— P1L
L coc @19 E] p1 6/0cDDANCPDA/TXD_1[SDA] icopwmop1 2 ki P12
GND V39 X ypp [STADC]/FB/SDA/P1 3 fat2— P13
Gate @—L13 10 by 5i55/1C7/PWMS PWMI/FBISDA/PI 4 fatl — P14
N76E003

<oOoQuwWL oo © =00 <OoO0OQWW oo ToNT
=1 SE53 =1 2553
0Q0QQ QOO0
(SRGRSRS] R1 [SRERERS]
sw
. . _ 10K
Display-Keypad Module Schematic ERErmase l l l l s
50000000
00000000 h h h h J1
U2 i | | T. ® Je @ VoD ; Lo
b GATE 210
1 3 | CLK O
A 0 A .
GATE O—E 2] A 31 n A ; € D_IN g Lo | LED
EE @ |2 D 15 4, 3B C_IN 210
o 14 5 B_IN O
Q3 c B IN B 1o - 7
0 - 13 3 AIN o
Q4 DP CIN C 5 [—————— -)
8 Boik a5 2 B 7l 12 15 shbL— | B 10
9 Q6 :25 E - 7 b2 LED- GND O
10
<F—= MR a7 F 8 o7 —0 CONN-SILS LED-RED
74LS164 i <TEXT> TEXT>
<TEXT> 4145
<TEXT>
Explanation

Timer 3’s internal hardware is very simple. It is an up-counting timer and is run by using system clock
as clock source. There is a prescalar to reduce the system clock input. The main feature of Timer 3 is
it auto-reload feature. This feature basically allows us to forget reloading its 16-bit counter unlike
Timer 0 and 1. There no external input or output option for this timer. Owing to all these, it is most
suitable for time-base generation and serial communication.

Timer3
Fsvs (Tfrf_:i??lzag) > Internal 16-bit Counter } il > (ngg?;q_ 4) [Timer 3 Interrupt
TR3 T 2_
(TSCON.3) T3PS[2:0] x
(TSCONR2O) - o] T T T [[[7[ol [T [T TI7]
RL3 RH3

In this demo, Timer 3 is set to interrupt every 100us.

(65536 — Reload Counter Value) (OXFFFF - 0xF9CO0)

Timer 3 ISR = -
Timer 3 Clock Frequency 16 MHz

= 100us

The following code sets up Timer 3 as discussed:

void setup Timer 3(void)

{

set Timer_ 3(0xF9CO);

set_ET3;
set_EA;
set_TR3;

Note that Timer 3’s input clock and system clock frequency is 16MHz since no prescalar is used.

Now what we are doing inside the timer interrupt? According to the schematic and objective of this
project, we need to update the seven segment displays and read the 4-bit keypad so fast that it looks
as if everything is being done without any delay and in real time.

#pragma vector = 0x83

__interrupt void Timer3 ISR(void)

{
write_74HC164(data_values[n]);
write_74HC145(n);

n++;

if(n > 9)

clr_TF3;

Inside timer ISR, both logic ICs are updated. Firstly, the number to be displayed is sent to the 74HC164
IC and then the seven-segment display to show the number is updated by writing the 74HC145 IC. At
every interrupt, one seven segment display is updated. There are 8 such displays and so it takes less
than a millisecond to update all these displays. Everything seems to complete in the blink of an eye.
During this time the keypad is also scanned in the main. With different keys, different LEDs light up.

11 ===\l

L e
”u J_im.. _.__._Jq'l'li..-n-h*.\'ut
TP ““ “T" A ,.'I'- L

Demo video: https://youtu.be/Gd6BecOFtxk

https://youtu.be/Gd6BecOFtxk

Simple PWM — RGB LED Fading

PWM hardware is another basic requirement for any modern-era microcontroller. We can use PWM
for a number of applications like motor control, light control, switch-mode power supplies (SMPSs),
etc. With PWM we can also simulate digital-to-analogue converter (DAC). Fortunately, N76E003
comes with a separate PWM block that is not a part of any internal timer. It has all the feature that
you can imagine. It can be used to generate simple independent 6 single channel PWMs. It can also
be used to generate complementary and interdependent PWMs with dead time feature.

[PWMPH, PWMP 0-t0-1
PUMPL) registers

LOAD (PWMCONDS)

PWMP buffer Couriar
e
> il FWMF)
| 15— P e

16-bit
Cl=ar
up/down -t ﬂ CLRPVM Interrupt INTSEL[1), INTTYF[10]
counter {PWMCONDA) selectiype [PWMCONI0)
PWMCKS PURITIE \\ PGD
s PR i =
(CKCONE) sy “rﬁrzz%; {PWMICONT.A) __/_,,— - = PWMOP1.2
PWMD buffer
oL, [PVWMD Register
’_||/> P&, | = PWM1P1.1/P14
FWM1 buffer
(PWMTH, -
I'Pll'n'M1L:- PWM1 Register
_lz/ 0] P&2 — PWM2/P0 5/F1.0
o 1
[PWM2 buffer |
FWMZ buffer PWM and
Fault Brake
output
e,y [PWM2 Register control
’_|=\ I3 lras | = PWMI/PD.0/PD4
"'L,/, b 1 o
PWM2 buffer
oo, [PWM2 Register
l:/ 0] |Pas — PWM4/PD.1
1
FWNI4 buffer 4‘1:
ot
;D 0] |PGS [— PWMS/P0.3/P1.5
. -
T

" \ Erake event
PWMCOMN1.5

[PViNESH, I' : (F14/FB)
PVMSL)

PWM5 Register

#include "N76E@03.h"
#include "SFR_Macro.h"
#include "Function_define.h
#include "Common.h"
#include "Delay.h"

#include "soft delay.h"

unsigned int R_value[10] = {20, 150, 250, 360, 440, 560, 680, 820, 900, 1020};
unsigned int G_value[10] = {440, 560, 680, 820, 900, 1020, 20, 150, 250, 360};
unsigned int B_value[10] = {900, 1020, 20, 150, 250, 360, 440, 560, 680, 820};

void set PWM period(unsigned int value);
void set PWMO(unsigned int value);
void set PWM1(unsigned int value);
void set PWM2(unsigned int value);
void set_PWM3(unsigned int value);
void set_PWM4(unsigned int value);
void set PWM5(unsigned int value);

main(void)

signed int i = ©
signed char j =

J
)

PO1 PushPull Mode;
P10 PushPull Mode;
P11_PushPull Mode;

PWM1_P11_OUTPUT_ENABLE;
PWM2_P1@_OUTPUT_ENABLE;
PWM4_P@1_OUTPUT_ENABLE;

PWM_IMDEPENDENT_MODE;
PWM_EDGE_TYPE;
set_CLRPWM;
PWM_CLOCK_FSYS;
PWM_CLOCK_DIV_64;
PWM_OUTPUT_ALL_NORMAL ;
set_PWM_period(1023);
set_PWMRUN;

while(1)
{
for(i = 0; i < 1024; i += 10)
{
set_PWM1(i);
delay ms(20);
}
for(i = 1023; i > 0; i -= 10)

{
set PWM1(i);

delay ms(20);
}

for(i = @; i < 1024;
{
set PWM2(i);
delay ms(20);
}
for(i = 1023; i > 0;
{
set PWM2(i);
delay ms(20);
}

for(i = 0; i < 1024;
{
set PWM4(1i);
delay ms(20);
}
for(i = 1023; i > 0;
{
set_PWM4(i);
delay ms(20);
}

delay ms(600);

for(i = @; i <=9; i++)
{
for(j = 0; j <= 9; j++)
{
set PWM4(R_value[j]);
set PWM1(G_value[j]);
set PWM2(B_value[j]);
delay ms(200);
¥
for(j = 95 j >= @; j--)
{
set PWM4(R_value[j]);
set PWM1(G_value[j]);
set PWM2(B_value[j]);
delay ms(200);

}

delay ms(6090);

void set_PWM_period(unsigned int value)

{

PWMPL = (value & Ox@OFF);
PWMPH = ((value & ©xFF@0) >> 8);

}

set_PWMO(value)

PWMOL (value & Ox0QOFF);
PWMOH = ((value & OxFFO0Q) >> 8);
set_LOAD;

set PWM1(value)

PWM1L = (value & OX@OFF);
PWM1H ((value & OxFF@@) >> 8);
set LOAD;

set_PWM2(value)

PWM2L (value & OxOQOFF);
PWM2H = ((value & OXFF@@) >> 8);
set_LOAD;

set_PWM3(value)

PWM3L = (value & OXx@OFF);
PWM3H = ((value & OxFFO0) >> 8);
set LOAD;

set_PWM4(value)

set_SFRPAGE;

PWM4L = (value & OXx@OFF);

PWM4H = ((value & OxFFOQ) >> 8);
clr_SFRPAGE;

set_LOAD;

set_PWM5(value)

set_SFRPAGE;

PWMSL = (value & OX@OFF);

PWMSH = ((value & OxFFO0) >> 8);
clr SFRPAGE;

set LOAD;

Schematic

wa o] PoS/AINA/TONCEPWM? IC3/PWM3/STADC/AINS/P0.4 a2l — P01
P06 2 po6/AINTXD AINGACS/PWMS/PO3 el — T8
2 P07 3 poyamNaRXD [SCLYRXD_1.0CDCK/ICPCK/P0.2 farlS— P02
= 1K P20 b P2 0RST MISO/ICAPWMAP0 1 el —TPOlg g
LSNP Bl —B30___ 3} p30/aNi/oscINANTO TIMOSIC3PWM3POO fact&— P00
0. 1uf —PI7 6.1 p) 7/AINO/INTI spcLkAcypPwMpl o fai— Pl g 6
—SND__ 7 ¥ 6np cLoaNTACTPwMIpl 1 fatd— TPl g
L P18 8.1 p1 6/OCDDA/ICPDA/TXD_I[SDA] icopwmop 2 el — P12
GND V3 9 X ypp [STADCJ/FB/SDA/P] 3 il — P13
—PIS 10 by syssacpwMs PWMI/FB/SDAP] 4 fabl— 11

NT76E003

Explanation

PWM generated by the N76E003’s PWM hardware is based on compare-match principle and this is
evident from its block diagram. There are 6 PWM channels and they can be used independently or as
interdependent groups to form complimentary PWMs. PWMs generated by N76E003 can be edge-
aligned or centre-aligned PWMs as per user’s requirement. The PWM block can be clocked directly
by the system clock or by Timer 1 overflow. Additionally, there is a prescalar unit to reduce input clock
source.

For demonstrating N76E003’s PWM feature, | used an RGB LED. Three independent PWMs were
generated using PWM channels 1,2 and 4. Let us look into the process of setting up the PWM channels
and the PWM hardware. We must firstly set the PWM GPIOs as push-pull GPIOs since PWM is an
output function of GPIO pins. We must also enable the PWM output channels we want to use.

PO1_PushPull_ Mode;

P10 PushPull Mode;

P11 PushPull Mode;

PWM1_ P11 OUTPUT_ENABLE;

PWM2_P10_OUTPUT_ENABLE;

PWM4 PO1 OUTPUT_ ENABLE;

Secondly, the PWM hardware is set up according to our needs. Since we need independent PWMs
here, independent PWM mode is selected. Edge-align PWM is selected since it is most easy to
understand and use. The PWM channels are reset before using them. The PWM outputs are non-
inverted and so they are characterized as normal PWMs. Here, | use system clock as the clock source
for the PWM block but it is prescaled/divided by 64 to get an effective PWM clock of 250kHz. The
PWM resolution is set to 10-bits when we set the period count or maximum PWM value/duty cycle.
Setting the period count yields in setting up the internal PWM counter. This gives a PWM of
approximately 245Hz frequency or 4ms period. Finally, the PWM hardware is enabled after setting up
all these.

PWM_TIMDEPENDENT_MODE;
PWM_EDGE_TYPE;
set_CLRPWM;
PWM_CLOCK_FSYS;
PWM_CLOCK_DIV_64;
PWM_OUTPUT_ALL_NORMAL ;
set PWM_period(1023);
set_PWMRUN;

Start

00 Channel 0

—— MW 2702 ms lF 2458 Hz——1 @ 4.069 ms—

01 Channel 1

02 Channel 2

To change PWM duty cycle, functions like the one shown below is called. After altering the duty cycle
or compare value, the new value is loaded and run.

set PWMn(value)

{
PWMnL (value & OxOQOFF);

PWMnH ((value & OxFF@Q) >> 8);
set_LOAD;

}

In the demo, the RGB LED fades different colours as a symbol of changing PWMs.

0. LTTTLEITTY

i 1 m e

) <RI gl
209 sdn

i g
. E@E

s
]

Demo video: https://youtu.be/vomQy0OalnPU

https://youtu.be/vomQy0alnPU

Complementary PWM with Dead Time

In the last section, we saw how we can generate independent PWM. Now we will see complimentary
or group PWM with dead-time. We will also see the things that were skipped in the previous segment.

Complementary PWM with dead-time feature is a must-have feature of any PWM drives in today’s
embedded-system industry. Unlike the simple PWM we saw previously, this kind of PWM has most
usage. Complementary PWM with dead-time is used in applications where we need to design motor
controllers, SMPSs, inverters, etc with H-bridges or half-bridges. In such applications, PWMs need to
operate in groups while ensuring that both PWMs don’t turn on at the same time. One PWM in a
group should be the opposite/antiphase of the other in terms of duty-cycle or waveshape.

H-Bridge Half-Bridge

4 4

21 (wg|
==] [

Lard
Pl
=T

;

T

Q2) -
z| F:

i i
&
Pl

Start

W 2615 ms [2089 Hz B 4787 ms—

00 Channel 0

01 Channel 1

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"

#include "Delay.h"

set PWM_period(unsigned int value);
set_PWMO(unsigned int value);

set PWM1(unsigned int value);

set PWM2(unsigned int value);
set_PWM3(unsigned int value);
set_PWM4(unsigned int value);

set PWM5(unsigned int value);

set PWM dead time(unsigned int value);

main(void)
signed int i = 0;

P11_PushPull_Mode;
P12_PushPull_Mode;

PWM@_P12_OUTPUT_ENABLE;
PWM1_P11 OUTPUT ENABLE;

PWM_COMPLEMENTARY_MODE ;
PWM_CENTER_TYPE;
set_CLRPWM;
PWM_CLOCK_FSYS;
PWM_CLOCK_DIV_64;
PWMO_OUTPUT_INVERSE;
PWM1_OUTPUT_INVERSE;
set_PWM_period(600);
set PWM dead time(49);
PWMO1_DEADTIME_ENABLE;
set_PWMRUN;

while(1)
{
for(i = @0; i < 600; i++)
{
set PWMO(i);
Timer@_Delaylms(5);
¥
for(i = 600; i > 0; i--)
{
set PWMO(i);
Timer@ Delaylms(5);
}
¥
¥

void set PWM period(unsigned int value)
{

PWMPL (value & Ox0QOFF);

PWMPH ((value & OxFF@@) >> 8);

}

void set PWMO(unsigned int value)
{
PWMOL = (value & OXOOFF);
PWMOH = ((value & OXFF@Q) >> 8);
set LOAD;

}

void set PWM1l(unsigned int value)
{
PWM1L (value & OxOQOFF);
PWM1H = ((value & OxFFO0Q) >> 8);
set_LOAD;

}

void set PWM2(unsigned int value)
{
PWM2L = (value & OXx@OFF);
PWM2H = ((value & OXFF@@) >> 8);
set LOAD;

}

void set_PWM3(unsigned int value)
{
PWM3L = (value & OxOQ0FF);
PWM3H = ((value & OxFF@B) >> 8);
set_LOAD;

}

void set PWM4(unsigned int value)
{
set_SFRPAGE;
PWMAL = (value & OxOQ0OFF);
PWM4H = ((value & OxFFO0) >> 8);
clr SFRPAGE;
set_LOAD;

void set PWM5(unsigned int value)
{
set_SFRPAGE;
PWM5L = (value & Ox@OFF);
PWM5H = ((value & OxFF00) >> 8);
clr_SFRPAGE;
set LOAD;

set_PWM_dead_time(

hb = @
b = ©

1b (value & Ox00FF);
hb = ((value & 0x0100) >> 8);

BIT_TMP = EA;

EA = O;

TA = OXxAA;

TA = Ox55;
PDTEN &= OXEF;
PDTEN |= hb;
PDTCNT = 1b;
EA = BIT_TMP;

Schematic
U
w2 posamaToncepwM2 IC3/PWM3Y/STADC/AINS/P0.4 fadl — PO
L0623 po 6/AINTXD AING/ICS/PWMs/P0.3 ol — L
2 B3] po/amamrxp [SCLYRXD_1.0CDCK/ICPCK/P02 ot —F02.
57 = — 1 p2.0RsT MISO/ICA/PWM4/PD.1 el —POL
=_C25w-pal —P30___ 31 p30/AINI/OSCINANTO TIMOSVICYPWM3/P0.0 el P00
0.1uf T 6 p1yanoaNTI SPCLK/ACYPWM2P1 0 feeld—F10
GND__ 7 ¥ GND cLoammicpwMipll fatd—Fllg &
= —P16 S p1.6/0CDDANCPDA/TXD_I[SDA] ICOPWMO/P] 2 ks PI2 o 6
o F—21 vop [STADCFB/SDA/P1 3 fat2— P13
—L_ 10 py sissacmpwMs PWMI/FB/SDAPL 4 fabl — P11

N76E003

Explanation

As discussed, there are two types of PWM in terms of count alignment. These are shown below:

PWMP (2nd) r

PWMP (1sf) — — — — a3 —|

12-bit counbar

PWMO1 (2nd)

1
1
1
PWMO1 (1st) — — H
1
1
I

|
IPYWMD1 cznu)l

| 1 .
1 | ity valid |

PGO1 output |

! T ! ? PWMP (2n) period valid
Load Load
PWMO1 (2nd) PWMP [2rd]

= . L

PWM frequency = PIWM F is the PWM clock source frequency divided b
WENY = PWMPHPWMPL <1 & ™ auency y
PWMDIV).
PWM high level duty = — "MnHPWMnl} Edge—Allgned PWM
{PWMPHPWMPL} + 1
PWMP (2nd) I— ———————
I

1
1
|
PWMP (15f) — — — — g — — = =— — — .
1
|
1

1
|
|
|
I
— — — —

PWMO1 (2nd)

PWMO1 (15t) === e

I Pwman (2nd)!

— —
I
|
|
|
|
I
I
I
|
|
|
|
|
I
I
|
|
|
|

H duty valia | i

1 I ;
PGO1 output ! ! |

1 1 1

i T ' T b FWMF (2nd) pesiod vaid

Wﬁdﬂnﬂl W'I-:‘behdfl
F
PWM frequency = 2X{PWFF’N:I,MPWPI_} (Fram is the PWM clock source frequency divided by
PWMDIV).
. WM nHPWMnL -

PWM high level duty = —-voMnA L Centre-Aligned PWM

{PWMPHPWMPL}

The first type was demonstrated in the simple PWM example. The second is demonstrated here. From
the perspective of a general user, the difference in them don’t affect much. Make sure that you check
the formulae for each type before using.

The set up for complimentary PWM with dead time is no different from the simple PWM set up. As
mentioned, there are a few minor differences. First the mode is set for complimentary PWM mode.
Secondly, centre-aligned PWM is used here. The outputs are also set as inverted outputs, i.e. 100%
duty cycle means minimum PWM value/count. The dead time period is set and implemented.

P11 PushPull Mode;
P12 PushPull Mode;

PWM@_P12_OUTPUT_ENABLE;
PWM1_P11 OUTPUT_ENABLE;

PWM_COMPLEMENTARY_MODE ;
PWM_CENTER_TYPE;
set_CLRPWM;
PWM_CLOCK_FSYS;
PWM_CLOCK_DIV_64;
PWMO_OUTPUT_INVERSE;
PWM1_OUTPUT_INVERSE;
set PWM_period(600);
set PWM dead time(49);
PWMO1 DEADTIME_ENABLE;
set_PWMRUN;

Now what is dead time in complimentary PWMs? Well simply is a short duration delay that is inserted
between the polarity shifts of two PWMs in a group.

Q1

MN-MOSFET

QuUTPUT

D. S q:_l\n. EhleSFET

Consider a half-bridge MOSFET configuration as shown above. Perhaps it is the best way to describe
the concept of dead-time. Surely, nobody would ever want to turn on both MOSFETs simultaneously
in any condition and also during transition. Doing so would lead to a temporary short circuit between
voltage source and ground, and would also lead to unnecessary heating of the MOSFETs and even
permanent damage. By applying dead-time this can be avoided. In half/H-bridges, complimentary

PWMs ensure that when one MOSFET is on, the other is off. However, at the edges of PWM polarity
shifts, i.e. when one is rising while the other is falling, there is short but certain such short-circuit
duration. If a dead time is inserted between the transitions, it will ensure that one MOSFET is only
turned on when the other has been turned off fully.

Setting dead time requires us to disable TA protection. The function for setting dead time is shown
below:

set PWM_dead_time(

hb
1b

1b = (value & OxO0FF);
hb ((value & 0x0100) >> 8);
BIT _TMP = EA;

EA = O;

TA OxAA;

TA Ox55;
PDTEN &= OXEF;
PDTEN |= hb;
PDTCNT = 1b;
EA = BIT_TMP;

Since complimentary PWMs work in groups, changing the duty cycle of one PWM channel will affect
the other and so we don’t need to change the duty cycles of both PWMs individually. This is why only
one PWM channel is manipulated in the code.

Demo

AL TR TP

Demo video: https://youtu.be/0APOUon1IVE

https://youtu.be/0APOUon1IVE

Wakeup Timer and Power Modes

One of key feature of many modern era microcontrollers is a way to wake up a micro once it went to
low power, sleep or idle mode. Like STM8s, N76E003 has this feature. The wakeup timer (WKT) is not
a complex hardware. As the block diagram below shows it is just a timer-counter with LIRC as clock
source. When the counter overflows, an interrupt is triggered. This interrupt wakes up the N76E003
chip.

10 kHz Internal | £ .. 5 , Gx:;w —
Oscillator re-scalar = |
(1/1~1/2048) »{ Internal &-bit Counter } *| (WKCON.4) —» WKT Interrupt
WKTCK T 4&7
(WKCON.5) WKPS[2:0])
WKTR (WKCONRO) o] T T [[[[7
(WKCON.3) RWK

Wakeup timer is particularly very useful when used with low power modes. In many applications, we
need to measure data on a fixed time basis while at other times when measurements are not taken,
idle times are passed. These idle periods consume power and so if we use a wakeup timer with low
power sleep mode, we can save energy. This is a big requirement for portable battery-operated
devices. Examples of such portable devices include data-loggers, energy meters and smart watches.

Code

#include "N76E@03 iar.h"

#include "Common.h"

#include "SFR_Macro.h"
"Function_define.h"
"soft_delay.h"

#pragma vector 0x8B

__interrupt WKT_ISR(

{
clr WKTR;
clr_WKTF;

P15 _PushPull Mode;

WKCON = 0x03;
RWK = ©X00;
set_EWKT;
set_EA;

while(1)
{

for(s = 0; s < 9; s++)

{

P15 = ~P15;
delay ms(100);

}

set _WKTR;
set_PD;

for(s = 0; s <= 9; s++)
{

P15 = ~P15;

delay ms(300);
}

set _WKTR;
set _PD;

Schematic
"
s P05 LY g stAINA/TOICEHPWM2 IC3/PWM3/STADC/AINS/PO.4 [l — P04
v
P06 2 posramvrxp AINGCSPWMSsPO3 ekl —E08
5 3 2
R2 —P07__ 3. pogsamamxD [SCLYRXD_1.0CDCK/ACPCK/P02 fald P02
1K PO 4] poomst MISOACAPWMA/PO.| bl — POL
J_Cz 15? B0 3l p1 0/AINIOSCINANTO TIMOSIICHPWM3PO.0 fete —T00
SW-PE 5
oLuf 7 &Y by grANOANT SPCLKACHPWMPL 0 fadd— P10
GND 7 Y G CLOAINTAC/PWMIPL] fedd— P11
g 3 2
L —PI6 8.1 b1 6/0CDDANCPDA/TXD_I[SDA] icopwMop1 2 el — P12
GND N9 1 vop [STADCFB/SDAP1 3 k2 — P13
P1 S/SSACTPWMS PWMUFB/SDA/PL4 bl — 214
NT6E003
GND
Explanation

In the demo demonstrated here, P15 LED is toggle fast for nine times. This marks the start of the
demo. After this toggling has been done, both the wakeup timer and the power down modes are
turned on.

set_WKTR;

set_PD;

During Power Down time, all operations inside the micro are suspended. There is also another low
power mode called Idle Mode. Both are similar but in idle mode peripherals are kept active.

PCON - Power Control

7

6

4

3

2

1

0

SMOD

SMODO0

POF

GF1

GFO

PD

DL

RV

R/W

RAW

RW

R/W

R

RW

Address: 87H

Reset value: see Table 6-2. SFR Definitions and Reset Values

Bit

Name

Description

PD

Power-down mode

Setting this bit puts CPU into Power-down mode. Under this mode, both CPU and
peripheral clocks stop and Program Counter (PC) suspends. It provides the lowest
power consumption. After CPU is woken up from Power-down, this bit will be
automatically cleared via hardware and the program continue executing the
interrupt service routine (ISR) of the very interrupt source that woke the system up
before. After retum from the ISR, the device continues execution at the instruction,
which follows the instruction that put the system into Power-down mode.

Mote that If IDL bit and PD bit are set simultaneously, CPU will enter Power-down
mode. Then it does not go to Idle mode after exiting Power-down.

Idle mode

Setting this bit puts CPU into Idle mode. Under this mode, the CPU clock stops
and Program Counter (PC) suspends but all peripherals keep activated. After
CPU is woken up from Idle, this bit will be automatically cleared via hardware and
the program continue executing the ISR of the very interrupt source that woke the
system up before. After refurn from the ISR, the device continues execution at the
instruction which follows the instruction that put the system into Idle mode.

0 DL

After the first set of LED toggles and power down mode, it takes about 1.5 seconds (according to the
prescalar value of 64 and 256 counts) for the wakeup timer to get triggered.

) Prescalar xCounter Value 64 X256
Wakeup time = =
LIRC Frequency 10000

® 1.55 (considering variations in LIRC)

When the interrupt kicks in, the MCU is brought back to working mode and the wakeup timer is
disabled. Again, the P15 LED is toggled. This time the LED is toggled at a slower rate, indicating the
continuation of the rest of the tasks after power down. After this the process is repeated with power
down and wake up timer reenabled.

Setting up the wakeup timer requires the same stuffs that we need during a timer configuration, i.e.
a prescalar value, counter value and interrupt. These three settings are done by the following lines of
code:

WKCON = 0x03;
RWK = 0X00;

set_ EWKT;
set_EA;

Since interrupt is used, WKT interrupt will be triggered when its counter rolls over.

#pragma vector 0x8B

__interrupt WKT_ISR(

{
clr WKTR;
clr_WKTF;

}

When WKT interrupt is triggered, its interrupt flag should be cleared in the software.

Demo

Demo video: https://youtu.be/ZyQZmJB3FRI

https://youtu.be/ZyQZmJB3FRI

Watchdog Timer

The watchdog timer (WDT) of N76E003 is just a reset-issuing timer and the purpose of this timer is to
recover a N76E003 micro from an unanticipated event/loop that may result in unresponsive or erratic
behaviour. It is clocked with LIRC oscillator and this makes it independent from main clock (HIRC or
ECLK) failure.

v

10 kHz

Furc Pre-scalar | _ | WDT counter |overflow | 512-clock
Internal (11~1/256) [(6-bit) Delay WDTRF WDT Resst
Oscillator
A clear +clear
WDPS[2:0] WDCLR

WDT Interrupt

LIRC is prescaled and feed to a counter. When the counter overflows, WDT interrupt is issued,
furthermore a reset is also generated based on delay. In normal running condition, the counter must
be periodically reset to 0 count to avoid reset. If for some reason this is not done then a reset will be
triggered.

The watchdog timer of N76E003 can also be used as a 6-bit general-purpose timer. However, this
usually not used as such. The only difference between using it as timer and as a watchdog timer is the
reset part.

10 kHz
Furc
Internal Pre-scalar | _ | WDT counter [overfiow
Oscillator (1~1y2se) [(6-bit) —h-—h-WDTF WDT Interrupt
IDL (PCON.0) clear
PD (PCON.T)
WDPS[2:0] WDCLR

Code

"N76E003.h"
"Common.h"
"Delay.h"
"SFR_Macro.h"
"Function_define.h"

#include
#include

#include

main (

P15 PushPull Mode;

Timero Delaylms(1000);

0; s <= 9; s++)

for(s =

{

P15 = ~P15;
Timer@ Delaylms(60);

}

TA OxAA;

TA = Ox55;

WDCON = ©x07;

set_WDCLR;

while((WDCON | ~SET_BIT6) == OxFF);
EA = 1;

set_WDTR;

while(1)

{
for(s = @; s <= 9; s++)
{
P15 = ~P15;
Timer@ Delaylms(200);

}
while(1);

n
PO.S/AINA/TO/ICH/PWM2 ICHPWM3/STADC/AINS/PO.4 a2l — 204

PO.6/AIN/TXD AING/ICS/PWMS/P03 el — PO

PO 7/ATN2/RXD) [SCLYRXD_1.0CDCK/ICPCK/P02 fatS— P02

A p2.0/RST MISO/ICA/PWM4/PO.1 Jetl— POL

P3.0/AINI/OSCIN/INTO TUMOSVICY/PWM3P0.0 ekt T00

A PLVAINDINTI spcLRACYPWMPL 0 s P10

GND CLOAINTICPWML/PL1 fadd— PIL

= = P16/OCDDA/ICPDA/TXD_I[SDA] 1coPwMo/p1 2 a3 P12
e VDD [STADC/FB/SDAPL 2 a2 — P13
P1S/SSACTPWMS PWMI/FB/SDAPL4 fucl— 214

N76E003

Explanation

For demoing WDT, again the P15 LED is used. The code starts with it toggling states ten times. This
marks the beginning of the code and the interval prior to WDT configuration.

Next the WDT is setup. Note that the WDT is Timed-Access (TA) protected. TA protection protects
crucial hardware like brownout detection circuit and WDT hardware from erratic writes.

TA —Timed Access
7 | 6 | 5 [4 | 3 | 2 | 1] 0
TA[7-0]

Address: CTH Reset value: 0000 0000b

Bit
70

Name
TA[T:0]

Description

Timed access

The timed access register confrols the access to protected SFRs. To access
protected bits, user should first write AAH to the TA and immediately followed by a
write of 55H to TA. After these two steps, a wiiting permission window is opened
for 4 clock cycles during this period that user may write fo protected SFRs.

For using the TA hardware, we need not to follow any special procedure. To enable access to some
hardware that are TA protected like the WDT all we have to do is to write the followings to TA register:

TA = OxAA;
TA = 0x55;
Without TA protection access, any changes to made to the registers of the TA protected hardware is
unaffected.

After enabling access to WDT, we can set it up. Setting the WDT requires us mainly to setup LIRC clock
prescalar. Once the prescalar is set we are good to go for enabling the WDT.

WDCON = ©Ox07;
set_WDCLR;

while((WDCON | ~SET_BIT6)
set_EA;
set WDTR;

OXFF);

Before all these can be done, we have to enable the WDT hardware either through In-Application
Programming (IAP) or by configuration bits during programming.

x
oD [odDa DID |m3850
~Boot Select—————————
+ APROM ¥ BOD Detect Enable
 LDROM ¥ BOD Inhibiing |4P
PwM Dutput Under OCD Ha ¥ BOD Reset Enable
{* Tristate
£ PuM conlinues BOD Voltage Select
P2.0 Pin Function CE o
(v Extemal Reset Pin ran o
™ Ingut-only Pin ~LDROM Size Select
WDT Enable = NoLDROM, APROM=18KB
(¥ Disabled " LDROM=1KE, APROM=17KB
Enabled and stop minning in T LDROM=2KB, APRDM=15KB
\defFonerdonnmose. (' LDROM=3KE, APROM=15(B
 Febled anckeep ruming n " LDROM=4KE, APROM=14KB

Cancel

Demo

Demo video: https://youtu.be/h8LeHpnA2vY

https://youtu.be/h8LeHpnA2vY

Communication Peripheral Overview

N76E003 packs basic serial communication peripherals for 12C, SPI and UART. These interfaces
enable us to interface external EEPROM and flash memories, real-time clocks (RTC), sensors, etc.

Max Max Max. Possible
Comm. Description 1/0) . ’ Number of Devices
Speed Distance .
in a Bus
Asynchronous serial point-to- . .
UART . . 2 115.2kbps 15m 2 (Point-to-Point)
point communication
Short- h ter- . .
SPI or rar?ge e ro.nou.s master 3/4 4Mbps 0.1m Virtually unlimited
slave serial communication
Short-range synchronous master-
12C slave serial communication using | 2 1Mbps 0.5m 127
one data and one clock line
A h iffi ial
Rs-4gs | Asynchronous differential two |, | 0o 0 | g okm Several
wire serial communication

N76E003 has two hardware UARTSs, one SPl and one I12C peripheral. The UART interfaces can be further
expanded to implement RS-485 and RS-422 communication protocols. With ordinary GPIOs and
optionally with hardware timers we can implement software-based UART, SPI and 12C too. However,
software methods are slow and resource-hungry. Software-based approach is, on the other hand,
needed when we have to interface devices that don’t use any of these communication topologies. For
example, the one-wire protocol used by DHT series relative humidity and temperature sensors needs
to be implemented by using an ordinary GPIO pin. Same goes for typical text and graphical LCDs.

Comm. | No. of Peripheral Blocks | No of GPIOs Used Default GPIO Pins | Alternative GPIO Pins
) TXDO = P06
RXDO = P07
UART UARTO 2 N/A
UART1 TXD1 =P16
RXD1 = P02
MOSI = P00 N/A
MISO = P01 SS = Other GPIO pin
SPI 1 Sord SCK=P10 if hardware-based SS
SS = P15 pin is not used
SCL=P13 SCL =P02
12¢ ! 2 SDA =P14 SDA = P16

Note that there is a conflict between UART1 and alternative 12C pins. There are also similar conflicts
with other hardware peripherals like PWMs, ADCs, etc since N76E003 packs lots of stuff in such a small
form-factor. Every single GPIO pin is precious. Try to keep things with default GPIO pins in order to
reduce conflicts with other hardware peripherals, coding and to maximize effective use of GPIOs.
Likewise bear in mind that timers have also such conflicts as they are used to implement both
hardware-based delays and the UART peripherals. You have to know for sure what you are doing, what
do you want and with which stuffs you wish to accomplish your task.

Serial Communication - UART

To date serial communication (UART) is perhaps the simplest and widely used form of communication
in use. UART block is only block available in most microcontrollers that can be easily interfaced with a
computer or a phone. Most communication modules like Bluetooth, Wi-Fi, GSM modems, GPS
modaules, etc are interfaced using UART. It has incredible range and is also the backbone of other
communication methods like RS-485, RS-422, etc.

ONS ¥aS 138 X8 X1 200

To learn more about UART visit the following link:

https://learn.mikroe.com/uart-serial-communication

Code

HMC1022.h

Get_Angular_Measurement

Start _Calibration

End_Calibration

Set Magnetic Declination High Byte
Set_Magnetic_Declination_Low_Byte

no_of data bytes returned

calibration_LED

read_heading();
calibrate compass()
factory reset();
set_declination_angle(

https://learn.mikroe.com/uart-serial-communication

HMC1022.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function define.h"
#include "Common.h"

#include "Delay.h"

#include "soft_delay.h"
#include "HMC1022.h"

unsigned char done = 0;
unsigned char data_bytes[no_of _data bytes returned] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00};

void read_heading(void)

{
unsigned char s = 0;
unsigned long CRC = 0;
Send_Data_To_UART1(Get_Angular_Measurement);

for(s = @; s < no_of_data_bytes_returned; s++)

{
data_bytes[s] = Receive_Data_From_ UART1();

if(s < (no_of _data_bytes returned - 1))
{

}

CRC += data_bytes[s];

}

CRC = (CRC & OxFF);

if(CRC == data_bytes[7])
{

done = 1;

}

void calibrate_compass(void)

{

unsigned char s = 0x00;

Send_Data_To_UART1(Start_Calibration);

for(s = @; s < 60; s++)
{
calibration_LED = 1;
delay ms(100);
calibration_LED = 0;
delay ms(909);

}

for(s = 0; s < 60; S++)

calibration_LED
delay ms(400);
calibration_ LED
delay ms(600);

}

Send Data To UART1(End Calibration);
¥

void factory reset(void)

{

Send Data To UART1(0xA®);
Send_Data_To UART1(©xAA);
Send_Data_To UART1(©xA5);
Send Data To UART1(©xC5);

}

void set_declination_angle(unsigned long angle)

{
unsigned long hb = 0;

unsigned char 1lb = 0;

1b = (angle & OxO0OFF);

hb = (angle & OxFF@0);
hb >>= 8;

Send_Data_To_UART1(Set_Magnetic_Declination_High_ Byte);
Send Data To UART1(hb);

Send Data To UART1(Set Magnetic Declination_Low Byte);
Send_Data_To_UART1(1lb);

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "LCD_2 Wire.h"
#include "HMC1022.h"

const unsigned char symbol[8] =

{
}s

OXx00, Ox06, Ox09, Ox09, Ox06, Ox00, Ox00,

extern unsigned char done;

data_bytes[no_of data bytes returned];

setup();
lcd symbol();

main(
{
setup();

while(1)

{
read_heading();

if(done)

{
LCD_goto(6, 1);
LCD_putchar(data_bytes[2]);

LCD_goto(7, 1);
LCD_putchar(data_bytes[3]);

LCD_goto(8, 1);
LCD_putchar(data_bytes[4]);

LCD_goto(9, 1);

LCD putchar('.");
LCD_goto(10, 1);
LCD_putchar(data_bytes[6]);

done = 0O;

}

P15 = ~P15;
delay ms(200);
}s

setup()

P15 _PushPull Mode;

LCD_init();
LCD_clear_home();
lcd_symbol();

LCD goto(3, 0);
LCD_putstr("Heading N");
LCD_goto(11, 9);
LCD_send(@, DAT);

InitialUART1_Timer3(96090);

lcd _symbol(

LCD_send(0x40, CMD);

for(s = 0; s < 8; S++)

{
LCD_send(symbol[s], DAT);

}

LCD_send(0x80, CMD);

Schematic
V3 &»—én PO S/AING/TO/IC6/PWM2 IC3/PWM3/STADC/AINS/PO 4 MSCL
ﬂ—%ﬁ PO.6/AIN/TXD AING/AC5/PWMS/P0.3 GM.SDA
2 _BOT 3. po/AIN2/RXD [SCLYRXD_1.0CDCK/ICPCK/P0.2 k8 P02
1.4 P20 4] promrs MISO/IC4/PWMA4/P0.1 IRER T MTC;(E&
=—C2 15? ﬂ—éb P3OVAIN I/OSCIN/INTO TI/MOSVICI/PWM3/P0.0 M
0.1uf + AW-F8 ﬂ'——-{)l« P1.7/AINO/INTI SPCLK/IC2/PWM2/P1.0 M
I GND 7 GND CLO/AINT/ICH/PWMIL/PL 1 M
= HMRE(ISEE .&—:J“ P1.6/0OCDDA/ICPDA/TXD_I[SDA] ICO/PWMO/PL.2 M
GND V3 98 vpp [STADC)/FB/SDA/P1 3 2 P13
M P1.5/SS/1ICT/PWMS5 PWMI/FB/SDA/P1 4 ﬂty—ﬂ
NT6E003
Explanation
The following are the commands that HMC1022 acknowledges when sent via UART:
Commands (Hex) Description
0x31 Get Angular Measurement |
0xCO Start Calibration
0xC1 End Calibration
0xA0-0xARA-0xA5-0xC5 Reset Module to Factory Default
0xAO0-0xAR-0xA5-T2C_ADDR | Change Module’s 12C Address*
0x03 + B8bit Data (High) Set Magnetic Declination (High Byte)
0x04 + 8bit Data (Low) Set Magnetic Declination (Low Byte)

HMC1022 gives heading data when it is requested. The highlighted command is that command.

Once requested it sends out a string of characters that carry heading information. The followings are
the response package and its details:

Package Format
Byte 0 | Byte 1 Byte 2 .. Byte 6 Byte 7
CrLf (New Line) Data Checksum

Package Details

Byte | Response (Hex) Response (ASCIl equivalent) | Description
0 0x0D CR (Carriage Return) Part of New Line (CR + LF = New Line)
1 0x0A LF (Line Feed) Part of New Line (CR + LF = New Line)
2 0x30 ~ 0x33 0~3 Angle Value (Hundreds; 100s)
3 0x30 ~ 0x39 |Q~9 Angle Value (Tens; 10s)
4 0x30 ~ 0x39 |0~9 Angle Value (Units; 1s)
5 0x2E . Period/ Decimal Point
6 0x30 ~ 0x39 |0~9 Angle Value (Decimal)
7 0x00 ~ OxFF Checksum (Sum of Byte 0 to 6) Lower Byte

From the above info, it is clear that HMC1022 will return 8 bytes when requested for heading. Out of
these we need bytes 2, 3,4 and 6. The rest can be ignored for simplicity.

Data from HM1022 is received by the following function:

void read_heading(void)

{

unsigned char s = 0;
unsigned long CRC = 0;
Send_Data_To_UART1(Get_Angular_Measurement);

for(s = @; s < no_of _data_bytes returned; s++)

{
data_bytes[s] = Receive_Data_From UART1();

if(s < (no_of data bytes returned - 1))
{

}

CRC += data_bytes[s];

}

CRC = (CRC & OxFF);

if(CRC == data_bytes[7])
{

}

done

Note that the function Send_Data_To_UART1 and Receive_Data_From_UART1 are BSP functions.
Likewise, InitialUART1_Timer3(9600) function is also a BSP function that initiates UART1 with Timer
3. As with ADC, BSP functions for UART are enough for basic setup. Try to use Timer 3 as it remains
mostly free. If you need more control over the UART, you can manually configure the registers.

In the main, the received bytes containing heading info are displayed.

Demo

]

adin

=

e

Demo video: https://youtu.be/Y0jehv58ugE

https://youtu.be/Y0jehv58ugE

UART Interrupt

UART, as we saw in the last example, can be used in polling mode but it is wise to use it in interrupt
mode. This feature becomes especially important and therefore, a must-have requirement when it
come to that fact that the host micro may not always know when to receive data. Unlike SPI/12C, UART
doesn’t always follow known data transactions. Take the example of a GSM modem. We and so does
our tiny host N76E003 micro don’t know for sure when a message would arrive. Thus, when an
interrupt due to reception is triggered, it is known to mark the beginning of data reception process.
The host micro can relax idle until data is received fully.

Here, we will see how to use UART interrupt to read a LV-Max EZ0 SONAR module.

Code

#include "N76E@03.h"
#include "SFR _Macro.h"
#include "Function define.h"
#include "Common.h"

#include "soft delay.h"

#include "LCD_2 Wire.h"

received = 0;
count = 0;
buffer[5] = {0x00, 0x00, 0x00, 0x00,

setup(void);

UARTO_ISR(
interrupt 4

{

if(RI == 1)

{

}

P15

buffer[count] = SBUF;
count++;

if(count >= 4)

{
clr_ES;
received = 1;

}

clr RI;

= ~P15;

setup();

while(1)

{

Send_Data_To_UARTO('S');
delay ms(490);
set_ES;

if(received)

{

for(i = 1; i < 4; i++)
{
LCD_goto((12 + i), 1);
LCD_putchar(buffer[i]);
}

count = 0;
received = 0;
set_ES;

¥

delay ms(49);

setup(
P15 PushPull Mode;

LCD_init();
LCD_clear_home();

LCD_goto(1, 9);

LCD_putstr("UART Interrupt");
LCD_goto(@, 1);
LCD putstr("Range/Inch:");

InitialUARTO Timer3(9600);
set_EA;

Schematic
n
V3 —L05 LY po.s/AINarTonCePWM2 IC3/PWM3/STADC/AINS/P0.4 a2l — P g scl
@RX.DM PO.6/AIN/TXD AINGICSPWMS/P03 fatl—L0 g spA
ij —T—25] po.7/AN2/RXD [SCLYRXD_1.0CDCK/ICPCK/P0.2 et —£02.
w0 p0 o s MISOAC4/PWM4/PO.1 il — FOL
==C2 IS‘? P30 5L p3o/AINI/OSCINNTO TI/MOSVICH/PWM3/P0.0 frtS—F00
0.1uf + SWPB P 6 1 gsamvonn SPCLK/C/PWM2/P10 fatd— P10
T—T SND 7 ¥ Gap cLO/AINTACT/PWMI/PL 1 fatd— P
= P16 5.1 p1 6/0CDDANCPDA/TXD_1[SDA] Copwmopl 2 Jeld— P12
o 22— vop [STADCYFB/SDA/P] 3 a2 P13
PIS 10 py s/s81CPWMS PWMUFBSDAR L4 fell P14

NT6E003

*Note the LV-Max EZO SONAR sensor is not directly connected with the N76E003 as shown in the schematic but rather it is
connected via a 74HC04 hex inverter. Two of these inverters are used — one for the TX side and the other for the RX side.

Explanation

This time UARTO is used and is setup using BSP built-in function. The only exception is the interrupt
part. The global interrupt is enabled but not the UART interrupt.

InitialUARTO_Timer3(96090);

set_EA;
The UART interrupt is only enabled after commanding the SONAR sensor:

Send_Data_To_UARTO('S');

delay ms(40);
set_ES;

This is done to avoid unnecessary reads.

The sensor is read inside the interrupt routine. The sensor outputs data as Rxxx<CR>. So, there are 5
bytes to read. The “R” in the readout works as a preamble or sync byte. The “xxx” part contains range
info in inches. Finally, <CR> is a carriage return character. Therefore, every time a character is received
an interrupt is triggered and the character is saved in an array. When all 5 bytes have been received,
the display is updated. On exiting the interrupt, the interrupt flag is cleared. P15 is also toggled to
visually indicate that an UART interrupt has been triggered.

UARTO_ISR(
interrupt 4

{
if(RI == 1)

{

buffer[count] = SBUF;
count++;

if(count >= 4)
{
clr ES;
received = 1;

}

clr RI;
}

P15 = ~P15;

Demo video: https://youtu.be/SCsPt88HFVk

https://youtu.be/SCsPt88HFVk

Inter-Integrated Circuit (12C) — Interfacing DS1307 I12C RTC

Developed by Philips nearly three decades ago, 12C communication (Inter-Integrated Circuit) is widely
used in a number of devices and is comparatively easier than SPI. For 12C communication only two
wires — serial data (SDA) and serial clock (SCK) are needed and these two wires form a bus in which
we can connect up to 127 devices.

Voo
Rup HUP
SDA > " >
* * * L] L] -
SCL T - I Y
SDA SCL SDA SCL SDA SCL
MNFBEDD3 e Other MCU Slave Device e

Everything you need to know about 12C can be found in these pages:

e https://learn.mikroe.com/i2c-everything-need-know

e https://learn.sparkfun.com/tutorials/i2¢c

e http://www.ti.com/Isds/ti/interface/i2c-overview.page

e http://www.robot-electronics.co.uk/i2c-tutorial

e https://www.i2c-bus.org/i2c-bus

e http://i2c.info

Apart from these N76E003’s datasheet explains 12C communication in high detail.

Code

regular I2C pins
alternate I2C pins

regular_I2C GPIOs
while(©@

alternative I2C_GPIOs do
while(®@

#define I2C_GPIO_Init(mode do{if I=
0){alternative_I2C_GPIOs else{regular_I2C_GPIOs while(©@

#define I2C_CLOCK Ox27

https://learn.mikroe.com/i2c-everything-need-know
https://learn.sparkfun.com/tutorials/i2c
http://www.ti.com/lsds/ti/interface/i2c-overview.page
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.i2c-bus.org/i2c-bus
http://i2c.info/

#tdefine I2C_ACK
#tdefine I2C_NACK

#tdefine timeout_count

I2C init();
I2C start();
I2C_stop()
I2C_read(ack_mode);
I2C write(value);

#include "N76E003.h"
"SFR_Macro.h"
"Function_define.
"Common.h"

#include "Delay.h"

#include "I2C.h"

I2C_init()
I2C_GPIO _Init(regular_I2C pins);

I2CLK = I2C_CLOCK;
set_I2CEN;

I2C start()
t = timeout_count;
set_STA;
clr_ST;
while((SI == 0) && (t > 90))
{

}s

t--;

I2C_stop()

t = timeout_count;

clr_ST;

set_STO;

while((STO == 1) && (t > 9))
{

}s

t--;

I2C_read(ack_mode)

signed int t = timeout_count;
unsigned char value = 0x00;

set_AA;

clr ST,

while((SI == 9) && (t > 9))
{

}s

value = I2DAT;

t--;

if(ack_mode == I2C_NACK)
{
t = timeout_count;
clr AA;
clr SI;
while((SI == 0) && (t > 9))
{

}s

t--;
}

return value;

void I2C_write(unsigned char value)

{

signed int t = timeout_count;

I2DAT = value;

clr_STA;

clr_ST;

while((SI == 0) && (t > 9))
{

};

t--;

DS1307.h

I2C_W
I2C R

sec_reg 0x00
min_reg ox01
hr_reg 0x02
day reg ox03
date_reg oxe4
month_reg 0x05
year_reg 0x06
control reg oxe7

DS1307_addr oxDO
DS1307_WR (DS1307_addr + I2C_W)

#define DS1307_RD

DS1307_init();
DS1307 read(address);
DS1307_write(address, value);
bcd_to_decimal(value);
decimal to bcd(value);
get_time();
set_time()

DS1307.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function define.h"
#include "Common.h"

#include "Delay.h"

#include "DS1307.h"

#include "I2C.h"

Ytime;

DS1307_init(

I2C_init();
DS1307 write(control reg, 0x00);

DS1307_read(address)
value = 0x00;
I2C_start();

I2C_write(DS1307_WR);
I2C write(address);

I2C_start();
I2C_write(DS1307_RD);

value = I2C_read(I2C_NACK);
I2C_stop();

return value;

void DS1307_write(unsigned char address, unsigned char value)
{

I2C start();

I2C_write(DS1307_WR);

I2C_write(address);

I2C write(value);

I2C stop();

unsigned char bcd_to_decimal(unsigned char value)

{
}

return ((value & Ox0F) + (((value & OxFO) >> 0x04) * Ox0A));

unsigned char decimal to bcd(unsigned char value)

{
}

return (((value / Ox0A) << 0x04) & OxFO) | ((value % OxOA) & OXOF);

void get_time(void)

{
time.s = DS1307 read(sec_reg);

time.s = bcd_to_decimal(time.s);

time. DS1307_read(min_reg);
time.m = bcd_to_decimal(time.m);

time. DS1307_read(hr_reg);
time. bcd_to_decimal(time.h);

time. DS1307 read(day_reg);
time. bcd_to_decimal(time.dy);

time. DS1307_read(date_reg);
time. bcd_to_decimal(time.dt);

time. DS1307_read(month_reg);
time. bcd_to_decimal(time.mt);

time. DS1307 read(year_reg);
time. bcd_to_decimal(time.yr);

void set_time(void)

{
time.s = decimal_to_bcd(time.s);
DS1307_write(sec_reg, time.s);

time.m = decimal to bcd(time.m);
DS1307 write(min_reg, time.m);

time.h = decimal to bcd(time.h);
DS1307_write(hr_reg, time.h);

time.dy = decimal to bcd(time.dy);
DS1307 _write(day _reg, time.dy);

time.dt = decimal to bcd(time.dt);
DS1307_write(date reg, time.dt);

time.mt = decimal to bcd(time.mt);
DS1307_write(month_reg, time.mt);

time.yr = decimal to bcd(time.yr);
DS1307_write(year_reg, time.yr);

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"

#include "Delay.h"

#include "soft_delay.h"
#include "LCD_3 Wire.h"
#include "I2C.h"

#include "DS1307.h"

extern struct

{
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

Ytime;

void show_value(unsigned char x_pos, unsigned char y pos, unsigned char
value);
void display_time(void);

void main(void)
{
time.s = 30;
time.m 58;
time.h 23;

P15 PushPull Mode;

LCD_init();

LCD_clear_home();
LCD_goto(0, 9);
LCD_putstr("N76E@@3 I2C RTCC");

DS1307 _init();
set_time();

while(1)
{
get_time();
display time();
¥

show_value(
chr = 0;

chr = ((value / 10) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);
LCD_putchar(chr);

display time(

P15 A= g
LCD_goto(6, 1);
LCD_putchar(' ');
LCD_goto(9, 1);
LCD_putchar(' ');
delay ms(400);

show_value(4, 1, time.h);
show_value(7, 1, time.m);
show_value(10, 1, time.s);

LCD_goto(6, 1);
LCD_putchar(':");
LCD_goto(9, 1);
LCD_putchar(':");
delay ms(400);

Schematic

.
Wi P05 LY po S/AINA/TONICEPWM2 IC3/PWM3/STADC/AINS/P0.4 a2l — P04 g 578
P06 2.3 pye/amirxD AINGACS/PWMS/P0.3 fatdl— P03 g sex
2 P07 3.4 pp7/aIN2RXD [SCLYRXD_1.0CDCK/ACPCK/P02 S — P02 g spo
5 1K F20 4] p2.0/RST MISO/C4PWM4PO.1 el — POL
L VP Bl —B0__ 3} p3osamnvi/oscINANTO TIMOSIC3PWM3POO kP00
o1uf P17 & py 7/AINO/NT SPCLRACYPWM/PL 0 fakd— P10
I —GND 7 ¥ Ghp CLOAINTAC/PWMI/PL1 fadd— FIL
L P16 81 b 6/OCDDA/ICPDA/TXD_I[SDA] icopwmop1 2 el P12
GND 2V3_ 9 b vpp [STADCFB/SDAPL 3 fat2— P13 g sar
— P15 10 b sissCTPWMS PWMI/FB/SDAP1 4 fotl — P14 g pp

NT76ED03

*Note that the pin naming of the chip in the schematic above is wrong. P13 and P14 are both SDA pins according to this
naming when actually P13 is SCL and P14 is SDA pin.

Explanation

| have coded two files for I12C easy and quick I12C implementation. These are 12C header and source
file. These files describe 12C hardware functionality as well as provide higher level functions under the
hood of which 12C hardware is manipulated. | have only coded these files for master mode only since
barely we would ever need N76E003 slaves. | also didn’t implement interrupt-based 12C functionalities
as this, in my experience, is also not needed in most of the cases.

I2C_init();
I2C_start();

TI2C_stop()
I2C_read(ack _mode);
I2C write(value);

Using hardware 12C requires us to manipulate the following registers apart from clock and GPIO
settings.

> 7 6 ca ca 3 2 ci o
12CON C control con | €©N LB S Eh @ G e[KB Joooo oooob
ZTOC °C fime-oul counter BFH | - - - ~__[2TocEN| DV __| 12T0F_[0000 00006
I2CLK FC clock BEH I2CLK[7 0] 0000 10010
I2STAT __|IC stalus BDH 2STATI3] [0 [o0 [0 [iii1 10000
I2DAT FC data BCH 2DATI7 0] 0000 _0000b
SADDR_1__|Slave 1 address BBH SADDR_1[7.0] 0000 00006
SADEN_1 Slave 1 address mask BAH SADEN_1[7:0] 0000 000O0b,
SADEN ___[Slave 0 addrass mask__|_BOH SADEN[/ 0] 0000 _0000b

I2C GPI0Os must be set as open-drain GPIOs as per 12C standard. 12C clock must be set according to the
devices connected in the bus. Typically, I12C clock speed ranges from 20 — 400kHz. This clock speed is
dependent on system clock speed Fsys. Therefore, before setting 12C clock speed you have to
set/know Fsys. 12C clock is decided by the value of I2CLK register. It is basically a prescalar value in
master mode.

Fsys
4(1+12CLK)

I12C Bus Clock =

So, if Fsys = 16MHz and 12CLK = 39 (0x27), the 12C bus clock rate is 100kHz.

Note that only in master 12C clock can be setup. In slave mode, the slave(s) synchronizes automatically
with bus clock.

I12CON register is they key register for using I12C. It contains all the flags and condition-makers.

For instance, consider the 12C start condition. In order to make a start condition, we have to set the
STA bit and clear 12C interrupt flag, SI. Since | used polling mode, SI is polled until it is cleared. This
ensures that a start condition has been successfully made. | have also added a software-based timeout
feature should there be an issue with the 12C bus. In N76E003, there is a hardware-based approach
for timeout too. Note that | didn’t care about the 12C status register states as again this is rarely
needed. If you want more grip on the I12C you can follow the BSP examples.

void I2C_start(void)
{

signed int t = timeout_count;

set_STA;
clr_ST;

while((SI == @) & (t > 0))
{

}s

==t

Finally, the last register that we will need is the 12C data register (I2DAT). It is through it we send and
receive data from 12C bus.

The demo | have shown here is that of a DS1307 I12C-based real time clock. Perhaps this is the simplest
device for learning about and understanding I12C.

Demo

|

i P Tl e

v oMy e L iy
TR TR e T

Demo video: https://youtu.be/tsjpRC59m2I

https://youtu.be/tsjbRC59m2I

Serial Peripheral Interface (SPI) — Interfacing MAX7219 and MAX6675

SPI just like 12C is another highly popular form of onboard serial communication. Compared to 12C it
is fast and robust. However, it requires more GPIO pins than other communication forms. These make
it ideal communication interface for TFT displays, OLED displays, flash memories, DACs, etc.

SPl is best realized as a shift register that shifts data in and out with clock pulses. In a SPI bus, there is
always one master device which generates clock and selects slave(s). Master sends commands to
slave(s). Slave(s) responds to commands sent by the master. The number of slaves in a SPI bus is
virtually unlimited. Except the chip selection pin, all SPI devices in a bus can share the same clock and
data pins.

Fsirs
Divider
12,14,18, 16 MSB LSB
Write Data Buffer

h=s =

06

Iy -« B-bil SNift Register [«—{ B
o
Read Data Buffer =
Select H
€
A A t A h 8
e 5 CLOCK o
5 g Clock Logic [»
A A A
Ak A
xl Z L
b g 8 2
= 5 u%
r k J | wsr o
SPI Status Control Logic | 4] SPIEN
&
|
3l 3| 4 =
= == z| w
EEEE FEFEEEE
YYYy HEEEEEEE
SPI Status Register SPI Control Register
: Internal
SPI Interrupt ¥ Data Bus

In general, if you wish to know more about SPI bus here are some cool links:

e https://learn.mikroe.com/spi-bus

e https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

e http://ww1l.microchip.com/downloads/en/devicedoc/spi.pdf

e http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus

e https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi

e http://www.circuitbasics.com/basics-of-the-spi-communication-protocol

https://learn.mikroe.com/spi-bus
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus
https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi
http://www.circuitbasics.com/basics-of-the-spi-communication-protocol

Code

MAX72xx.h

while(©

MAX72xx_SPI_HW_Init(clk _value);
MAX72xx_init()
MAX72xx_write(address,

#include "N76E003_ IAR.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"

#include "Delay.h"

#include "MAX72xx.h"

void MAX72xx_SPI HW Init(unsigned char clk value)
{

switch(clk value)

{

case 1:

{
clr_SPR1;
set_SPRO;
break;

}

case 2:

{
set SPR1;
clr SPRO;
break;

}

case 3:

{
set SPR1;
set_SPRO;
break;

¥
default:

{
clr SPR1;
clr_SPRO;
break;
}
}

set_DISMODF;
set_MSTR;
clr_CPOL;
clr_CPHA;
set_SPIEN;

void MAX72xx_init(void)
{

MAX72xx_SPI_GPIO_init();
MAX72xx_SPI_HW_Init(@);

MAX72xx_write(shutdown reg, run_cmd);
MAX72xx_write(decode_mode reg, Code B decode digit @ to 3);
MAX72xx_write(scan_limit_reg, digit @ to 3);

MAX72xx_write(intensity reg, 0x19);

MAX72xx_write(address,
MAX72xX_CS_OUT_LOW();
SPDR = address;
while(!(SPSR & SET_BIT7));
clr SPIF;
SPDR = value;
while(!(SPSR & SET_BIT7));
clr SPIF;

MAX72xx_CS_OUT_HIGH();

MAX6675.h

while(o

MAX6675_SPI_HW_Init(clk_value);
MAX6675_init(b
MAX6675 get ADC(*ADC_data);
MAX6675_ get T(ADC_value, T unit);

MAX6675.c

"N76E003_IAR.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"MAX6675.h"

MAX6675 SPI HW Init(clk value)
{

switch(clk value)

{

case 1:

{
clr SPR1;
set_SPRO;
break;

}

case 2:

{
set_SPR1;
clr SPRO;
break;

}

case 3:

{
set SPR1;
set SPRO;
break;

}
default:

{
clr_SPR1;
clr_SPRO;
break;

}
}

set_DISMODF;
set_MSTR;
clr_CPOL;
set_CPHA;
set_SPIEN;

}

MAX6675_init()

MAX6675_SPI_GPIO_init();
MAX6675_SPI_HW_Init(@);

MAX6675_get ADC(*ADC_data)

unsigned char 1lb

unsigned char hb =

unsigned char samples = no_of_samples;
unsigned int temp_data = ©;

unsigned long avg_value = 0;

while(samples > 9)

{
MAX6675_CS_OUT_LOW();

SPDR = 0x00;

while(!(SPSR & SET_BIT7));
hb = SPDR;

clr SPIF;

SPDR = 0x00;

while(!(SPSR & SET_BIT7));
1b = SPDR;

clr SPIF;

MAX6675_CS_OUT_HIGH();

temp_data = hb;

temp _data <<= 8;
temp_data |= 1b;
temp_data &= OX7FFF;

avg_value += (unsigned long)temp_data;

samples--;
Timer@ Delaylms(10);
s

temp_data = (avg_value >> 4);

if((temp_data & 0x04) == close_contact)

{
*ADC_data = (temp_data >> 3);

return close_contact;

}

else

{

*ADC_data = (count_max + 1);
return open_contact;

float MAX6675_get T(unsigned int ADC_value, unsigned char

{
float tmp = 0.0;

tmp = (((float)ADC_value) * scalar_deg C);

switch(T_unit)
{
case deg F:
{
tmp *= scalar_deg F 1;
tmp += scalar_deg F 2;
break;

}

case tmp_K:

{
tmp += scalar_tmp K;
break;

}
default:

{
}

break;

}

return tmp;

"N76E003 IAR.h"
"Common.h"
"Delay.h"
"SFR_Macro.h"
"Function_define.h"
"soft _delay.h"
"MAX72xx.h"
"MAX6675.h"

main(

ti
t

P15 PushPull Mode;
MAX6675_init();
MAX72xx_init();

while(1)
{
P15 = 1;
clr_CPOL;
set_CPHA;
MAX6675_ get ADC(&ti);
t = ((YMAX6675 get T(ti, tmp K));
delay ms(1090);

P15 = ©;
clr CPOL;
clr_CPHA;
MAX72xx_write(DIG3, ((t / 1000) % 10));

MAX72xx_write(DIG2, ((t / 100) % 10));
MAX72xx_write(DIG1, ((t / 18) % 10));
MAX72xx_write(DIGO, (t % 10));

delay ms(100);

Schematic
-q
Wi P05 LX po.s/AING/TOACEPWM2 IC3/PWM3/STADC/AINS/P0.4 fadl— P04
06 2] poeamvTxD AING/ICS/PWMS/P0.3 fald— P8
2 P03 poyamarxD [SCLYRXD_I.OCDCK/ICPCK/P0.2 ot — P02
1K P20 4. promst MISONC4/PWM4/P0.1 el — POl g miso
i S l;r_, P30 3.} p30/AINIOSCINNTO TIMOSIIC3/PWM3/P0.0 kS P g pos)
0.1uf 4 SWPB _PIT__ 6 p1 7iamonnTi spcLk/cypwmplo fadd—F10 g sk
I —<SNb 7 ¥ G cLo/aNTAC/PWMIPLL et — Pl g s maxzaio
L P16 8.4 p16/OCDDA/NICPDA/TXD 1[SDA] 1copwMmo/p1 2 ekl — P12 g o5 maxeets
=V 9 ¥ vop [STADCYFB/SDA/P] 3 P13
P 103 p1sissacipwms PWMI/FB/SDAPL.4 bl — P12
N76E003
Explanation

With SPI we have to deal with two things —first, the initialization and second, the data transfer process.
Configuring SPI needs a few things to be set up. These are:

e SPl communication bus speed or simply clock speed
e Clock polarity

e Clock phase

e Orientation of data, i.e. MSB first or LSB first

e Master/slave status

e Optionally hardware slave selection pin use

Most of these can be done by manipulating the following registers:

SPCR — Serial Peripheral Control Register

7 B 5 4 3 2 1 0
SSOE SPIEN LSBFE MSTR CPOL CPHA SPR1 SPRO
R/W R/W R/W R/W R/W R/W R/W R/W
Address: F3H, page 0 Reset value: 0000 0000b

SPDR — Serial Peripheral Data Register
7 [6 [5 | 4 | 3 | 2 | 1 | 0
SPDRI[7:0]
R/W

Address: F&H Reset value: 0000 0000b

SPCR configures the hardware SPI peripheral of N76E003 while SPDR is used for transferring data.

To aid in all these | have coded the following functions. Though | didn’t use these code snippets in the
actual demo code for demonstration purposes, these will most certainly work and reduce coding
effort.

SPI init(clk speed,

set SPI clock rate(clk speed);
set_SPI _mode(mode);
set_DISMODF;

set MSTR;

set SPIEN;

SPI transfer(write value)

t = timeout_count;
register read_value = 0x00;

SPDR = write value;
while((!(SPSR & SET_BIT7)) & (t > 0))

{

s
read value = SPDR;
clr_SPIF;

t--;

return read_value;

SPI_init function sets up the SPI peripheral using two information — the bus clock speed and SPI data
transfer mode. It initializes the SPI hardware as a SPI master device and without hardware salve
selection pin. This configuration is mostly used in common interfacings. Only mode and clock speed
are the variables. In the demo, it is visible that MAX7219 and MAX6675 work with different SPI modes.
| also didn’t use the hardware slave selection because there are two devices and one slave pin.
Certainly, both external devices are not driven at the same time although both share the same bus
lines.

SPI_transfer reads and writes on the SPI bus. Here the master writes to the slave first, waits for
successful transmission and reads from the slave later. It is best realized by the following figure:

u MOSI MOSI
SPI shift register SPI shift register
716]5]4]3]2[1] o "4 7]6]5]4]3]2] 1]0
i SPCLK SPCLK
SPI clock
generator :o* J_SE
Master MCU GND Slave MCU

* 55 configuration follows DISMODF and SSOE bits.

To demo SPI, MAX6675 and MAX7219 were used because one lacked read feature while the other
lacked write feature. In the demo, MAX6675 is read to measure the temperature sensed by the K-type
thermocouple attached with it and display the measured temperature in Kelvin on MAX7219-based
seven segment display arrays.

Demo

Demo video: https://youtu.be/OE-nOCFYh54

https://youtu.be/0E-nOCFYh54

One Wire (OW) Communication — Interfacing DHT11

One protocol is not a standard protocol like I12C or SPI. It is just a mere method of communicating with
a device that uses just one wire. There are a few devices that uses such principle for communication.
DHT series sensors, DS18B20s, digital serial number chips, etc. are a few to mention. As | stated before,
since one wire communication doesn’t belong to a dedicated format of communication, there is no
dedicated hardware for it. With just a bidirectional GPIO pin we can implement one wire
communication. Optionally we can also use a timer for measuring response pulse widths since the
method of sending ones and zeroes over one wire requires the measurement of pulse durations. This
way of encoding ones and zeros as a function of pulse width is called time-slotting.

MCU sends out DHT11 sends out | : | :
Voo | Start signal Response signal ! Sending 0 ! Sending 1

Gnd | i
----- I 1 -I--_----_|_ T______I_ 1 1
- > < > | | 3 > € > !
=18ms - 20.40 - 80 us 80 ps 50 ps | 2028 1 T 5 s 70 ps !
Hs Hs
MCU signal Data ransfer begins
DHT11 signal

Shown above is the timing diagram for DHT11’s time slots. Check the length of pulse high time for one
and zero. This is the technique applied in time-slotting mechanism. We have to time pulse lengths in
order to identify the logic states.

Code

DHT11.h

DHT11_init();
get byte(
get data(

DHT11.c

"N76E003.h"

"SFR_Macro.h"
"Function define.h"

"Common.h"
"Delay.h"
"soft_delay.h"
"DHT11.h"

values[5];

DHT11_init(

DHT11 pin_init();
delay ms(1000);

get_byte(

s = 0;
value = 0;

for(s = @; s < 8; s++)

{

value <<= 1;
while(DHT11_pin_IN() == LOW);
delay us(30);

if(DHT11_pin_IN() == HIGH)
{

}

while(DHT11_pin_IN() == HIGH);
}

return value;

value |= 1;

get_data(

chk = 0;
s = 0;
check_sum = 0;

DHT11_pin_HIGH();
DHT11 pin_LOW();
delay ms(18);
DHT11_pin_HIGH();
delay us(26);

chk = DHT11 pin_IN();

if(chk)
{

}

return 1;

delay us(89);
chk = DHT11 _pin_IN();

if(!chk)
{

¥
delay us(89);

return 2;

for(s = 0; s <= 4; s += 1)

{
}

DHT11_pin_HIGH();

values[s] = get_byte();

for(s = 0; s < 4; s += 1)

{
}

check sum += values[s];

if(check _sum != values[4])

{
}

else

{

return 3;

return 0;

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"soft_delay.h"
"LCD_2_Wire.h"
"DHT11.h"

values[5];

symbol[8] =

Ox06, Ox09, 0Ox09, Ox06, 0x00, 0x00, 0x00

setup(b
lcd_symbol()3
lcd_print(

void main(void)

{

unsigned char state =
setup();

while(1)

{
state = get_data();

switch(state)
{

case 1:

{

}

case 2:

{
LCD_clear_home();
LCD_putstr("No Sensor Found!");
break;

3:

LCD _clear home();
LCD_putstr("Checksum Error!");
break;

}
default:

{
LCD_goto(@, 9);
LCD_putstr("R.H/ %: D

lcd_print(14, 0, values[@]);

LCD_goto(@, 1);
LCD_putstr("Tmp/");
LCD_goto(4, 1);
LCD_send (@, DAT);
LCD_goto(5, 1);
LCD_putstr("C:");

if((values[2] & 0x80) == 1)
{
LCD_goto(13, 1);
LCD_putstr("-");
}

else

{
LCD goto(13, 1);
LCD_putstr(" ");
}

lcd_print(14, 1, values[2]);
break;

}

delay ms(1000);
s

setup(
DHT11_init();
LCD_init();

LCD_clear_home();
lcd_symbol();

lcd_symbol(

LCD_send(©x40, CMD);
for(s = @; s < 8; s++)
{
LCD_send(symbol[s], DAT);
}

LCD_send(0x80, CMD);

lcd print(
chr = 0x00;
chr = ((value / 10) + 0x30);

LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD _goto((x_pos + 1), y pos);
LCD_putchar(chr);

Schematic

DHTI . pos 1 — . : 20 P04
s] Po.sAmNaToncePwWM2 IC3/PWM3/STADC/AINS/P0.4 fafl— P04 g sc
P06 2 ppganvrxD AIN6CS/PWMs/P03 il — PO g spa

R2 P07 3. po7/AIN2RXD [SCLYRXD_I.OCDCK/ICPCK/P02 et — P02

IK £20 el p2.oRsT MISO/IC4/PWMA/PO.1 et l—FOL

—C2 IS? —B30___ 3.} p3.0/AINIOSCINNTO TIMOSVIC3/PWM3/P0.0 fall— P00

o 1 SWFPB_PI7___ 6] p) yamnonni SPCLK/ICYPWM2/P1 0 fabS— P10

I —GND 7 ¥ Ghp CLO/AINTACPWMI/PL fad— P11

L P16 5.1 p1 6/0CDDANICPDA/TXD_1[SDA] 1copwMop1 2 fadd— P12

GND V39 ¥ vop [STADC)FB/SDA/P13 i P13

P 101 p) s/ssAcpwMs PWMI/FB/SDAPL4 bl — 14

N76E003
Explanation

As stated earlier, OW basically needs two things — first, the control of a single GPIO pin and second,
the measurement of time. | would like to highlight the most important part of the whole code here:

get_byte(

s = 0;
value = 0;

for(s = 0; s < 8; S++)

{

value <<= 1;
while(DHT11_pin_IN()
delay us(390);

if(DHT11_pin_IN() ==
{

}

while(DHT11_pin_IN() == HIGH);

value |= 1;

}

return value;

From DHT11’s timing diagram, we know that a zero is define by a pulse of 26 - 28us and a logic one is
defined by a pulse of 70us. It is here in the get_byte function we check the pulse coming from DHT11.
The DHT11’s pin is polled as an input and after 30us if the result of this polling is high then it is
considered as a logic one or else it is considered otherwise. Once triggered, DHT11 will provide a 5-
byte output. All of the bits in these 5 bytes are checked this way. Though it is not the best method to
do so, it is easy and simple.

Demo

Demo video: https://youtu.be/1Zetmad3fLU

https://youtu.be/1Zetmad3fLU

One Wire (OW) Communication — Interfacing DS18B20

One wire communication, as stated previously, doesn’t have a defined protocol. Except for the time-
slotting mechanism part, there is nothing in common across the devices using this form of
communication. We have seen how to interface a DHT11 relative humidity and temperature sensor
previously. In this segment, we will see how to interface a DS18B20 one-wire digital temperature
sensor with N76E003. DS18B20 follows and uses a completely different set of rules for
communication.

Code

one_wire.h

onewire reset/();

onewire write bit(bit value);
onewire read bit();

onewire write(value);
onewire read();

one_wire.c

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"soft_delay.h"
"one_wire.h"

onewire reset(
res =

DS18B20 GPIO_init();

DS18B20_OUT_LOW();
delay us(489);
DS18B20_OUT_HIGH();
delay us(69);

res = DS18B20_IN();

delay us(4890);

return res;

onewire write bit(
DS18B20 _OUT_LOW();

if(bit_value)

{
delay us(104);
DS18B20 OUT HIGH();

onewire read bit(

DS18B20 OUT_LOW();
DS18B20 OUT HIGH();
delay us(15);

return(DS18B20 IN());

onewire write(

while(s < 8)
{
if((value & (1 << s)))
{
DS18B20_OUT_LOW();
nop;
DS18B20 OUT _HIGH();
delay_us(60);

}

else
{

DS18B20_OUT_LOW();
delay us(690);
DS18B20 OUT _HIGH();
nop;

onewire read(

bit_value)

S = 0x00;
value = 0x00;

while(s < 8)

{
DS18B20_OUT_LOW() ;

nop;
DS18B20_OUT_HIGH();

if(DS18B20_IN())
{

}

delay us(69);

value |= (1 << s);

S++;

}

return value;

DS18B20.h

"one_wire.h"

DS18B20_init(Ik
DS18B20 get temperature()

DS18B20.c

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"
"soft_delay.h"
"DS18B20.h"

DS18B20_init(

onewire reset();
delay ms(100);

float DS18B20 get temperature(void)

{

unsigned char msb = 0x00;
unsigned char 1lsb = 0x00;
register float temp = 0.0;

onewire reset();
onewire write(skip ROM);
onewire write(convert T);

switch(resolution)

{

case 12:

{
delay ms(750);

break;

}

case 11:

{
delay ms(375);

break;

}

case 10:

{
delay ms(188);
break;

}

case 9:

{
delay ms(94);

break;

}

onewire_reset();

onewire_write(skip_ROM);
onewire_write(read_scratchpad);

1sb = onewire read();
msb = onewire read();

temp = msb;
temp *= 256.0;
temp += 1sb;

switch(resolution)

{

case 12:

{

temp *= 0.0625;
break;

}

case 11:

{
temp *= 0.125;
break;

}

case 10:

{
temp *= 0.25;
break;

}

case 9:

{
temp *= 0.5;
break;

}

delay ms(490);

return (temp);

"N76E003.h"
"SFR_Macro.h"
"Function_define.h"
"Common.h"
"Delay.h"

"soft _delay.h"
"DS18B20.h"

"LCD_3 Wire.h"

symbol[8] =

0x06, Ox09, Ox09, Ox06, Ox00, 0x00, Ox00

lcd_symbol()
print_C(
print_I(
print_D(

points);
print_F(
points);

main(

DS18B20_init();
LCD_init();
lcd symbol();

LCD_goto(@, 9);
LCD_putstr("N76E003 DS18B20");

LCD_goto(@, 1);
LCD_putstr("T/ C");
LCD_goto(2, 1);

LCD _send(@, DAT);

while(1)

{
t = DS18B20 get temperature();

print F(9, 1, t, 3);
delay ms(100);
s

void lcd_symbol(void)
{
unsigned char s = 0;

LCD_send(@x40, CMD);

for(s = @; s < 8; s++)

{
}

LCD_send(0x80, CMD);

LCD_send(symbol[s], DAT);

void print_C(unsigned char x_pos, unsigned char y_pos, signed int value)

{

char ch[5] = {0x20, 0x20, 0x20, 0x20, '\0'};

if(value < 0x00)

{
ch[9] ox2D;
value -value;

}

else

{
}

if((value > 99) && (value <= 999))
{

ch[9] 0x20;

ch[1] = ((value / 100) + 0x30);
ch[2] = (((value % 100) / 10) + 0x30);
ch[3] = ((value % 10) + 0x30);

else if((value > 9) && (value <= 99))
{
ch[1] (((value % 100) / 10) + 06x30);
ch[2] ((value % 10) + 0x30);
ch[3] 0x20;
}
else if((value >= @) && (value <= 9))
{
ch[1] ((value % 10) + 0x30);
ch[2] 0x20;
ch[3] 0x20;
}

LCD_goto(x_pos, y_pos);
LCD_putstr(ch);

void print_I(unsigned char x_pos, unsigned char y_pos, signed long value)

{
char ch[7] = {0x20, ©0x20, 0x20, 0x20, 0x20, 0x20, '\0'};

if(value < 0)

{
ch[9] 0x2D;
value -value;

}

else

{
}

if(value > 9999)
{

ch[@] 0x20;

ch[1] ((value / 10000) + 0x30);

ch[2] (((value % 10000)/ 1000) + 0x30);
ch[3] = (((value % 1000) / 100) + 0x30);
ch[4] (((value % 100) / 10) + 0x30);
ch[5] ((value % 10) + 0x30);

}

else if((value > 999) && (value <= 9999))

{
ch[1] (((value % 10000)/ 1000) + 0x30);
ch[2] = (((value % 1000) / 100) + 0x30);
ch[3] (((value % 100) / 10) + 0x30);
ch[4] ((value % 10) + 0x30);
ch[5] = 0x20;

¥

else if((value > 99) && (value <= 999))

{
ch[1] (((value % 1000) / 100) + 0x30);
ch[2] (((value % 100) / 10) + 0x30);
ch[3] ((value % 10) + 0x30);
ch[4] 0x20;
ch[5] 0x20;

}
else if((value > 9) && (value <= 99))

{
ch[1] (((value % 100) / 10) + 0x30);
ch[2] ((value % 10) + 0x30);
ch[3] 0x20;
ch[4] 0x20;
ch[5] 0x20;

ch[1] ((value % 10) + 0x30);
ch[2] 0x20;
ch[3] 0x20;
ch[4] 0x20;
ch[5] 0x20;
}

LCD_goto(x_pos, y_pos);
LCD putstr(ch);

void print_D(unsigned char x_pos, unsigned char y_pos, signed int value,
unsigned char points)

{ char ch[5] = {0x2E, ©x20, 0x20, '\0'};
ch[1] = ((value / 100) + 0x30);
if(points > 1)
{ ch[2] = (((value / 10) % 10) + 0x30);

if(points > 1)
{

}

ch[3] = ((value % 10) + 0x30);

}

LCD_goto(x_pos, y_pos);
LCD_putstr(ch);

void print_F(unsigned char x_pos, unsigned char y_pos, float value, unsigned
char points)

{

signed long tmp = 0x0000;

tmp = value;
print_I(x_pos, y_pos, tmp);
tmp = ((value - tmp) * 1000);

if(tmp < 9)
{

tmp = -tmp;
}

if(value < 9)
{

value = -value;
LCD_goto(x_pos, y_pos);
LCD_putchar(ex2D);

}

else

{
LCD_goto(x_pos, y_pos);

LCD_putchar(0x20);
}

if((value >= 10000) && (value < 100000))
{

¥
else if((value >= 1000) && (value < 10000))

{

print D((x_pos + 6), y pos, tmp, points);

print D((x_pos + 5), y pos, tmp, points);

else if((value >= 100) && (value < 1000))

print_D((x_pos + 4), y pos, tmp, points);
else if((value >= 10) && (value < 100))
print_D((x_pos + 3), y pos, tmp, points);
else if(value < 10)
print D((x_pos + 2), y pos, tmp, points);
Schematic
L"ﬁ
POS Ly po.s/amNarToncePwM2 IC3/PWM3/STADC 20 P4
Wi — I pos M3/s AINs/P04 2l P0 o rp
" DS18B20 pg\e 9 PO3
o—20 2. pp6/AINTXD AING/ICS/PWMS/P03 fil—T0 g sck
9 2 ")
R2 P07 3.0 po/AIN2/RXD [SCLYRXD_1.OCDCK/ACPCK/P02 i — P02 g spo
- LK P20 L P2.0/RST MISO/IC4/PWM4/PO 1 frell — POL
LSV Bl —B30__ 3R p3 /AINIOSCINANTO TIMOSHICYPWM3/P0.0 kP00
0. luf + —PI7T_ 6 py 7/AINO/INTI SPCLK/ACYPWM2/P1 0 ks — P10
I —GND_ 7§ GaD CLO/AIN7ICT/PWMI/PL1 i — P11
2 3 2
L —P16 8.1 p16/OCDDAICPDA/TXD 1[SDA] icopwmopl 2 fakd— P12
GND Vi 9 X vpp [STADCYFB/SDAPI 3 fat2— P13
— LIS 10 b sssC7PWMS PWMI/FB/SDA/P] 4 ffrbd Pld

NT6E003

Explanation
One wire communication is detailed in these application notes from Maxim:

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162

These notes are all that are needed for implementing the one wire communication interface for
DS18B20. Please go through these notes. The codes are self-explanatory and are implemented from
the code examples in these app notes.

Demo

Demo video: https://youtu.be/uOqg7etfugvg

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162
https://youtu.be/uOq7etfuqvg

Decoding NEC IR Remote Protocol

IR remote controllers are used in a number of devices for remotely controlling them. Examples of
these devices include TV, stereo, smart switches, projectors, etc. IR communication as such is
unidirectional and in a way one wire communication. Ideally there is one transmitter and one receiver
only.

Infrared Receiver

*
,))) Vil

OO
OEEOOO
EOEEODO

L

Data to be sent from a remote transmitter is sent by modulating it with a carrier wave (usually
between 36kHz to 40kHz). Modulation ensure safety from data corruption and long-distance
transmission. An IR receiver at the receiving end receives and demodulates the sent out modulated
data and outputs a stream of pulses. These pulses which vary in pulse widths/timing/position/phase
carry the data information that was originally sent by the remote transmitter. How the pulses should
behave is governed closely by a protocol or defined set of rules. In most micros, there is no dedicated
hardware for decoding IR remote protocols. A micro that needs to decode IR remote data also doesn’t
know when it will be receiving an IR data stream. Thus, a combination of external interrupt and timer
is needed for decoding IR data.

In this segment, we will see how we can use an external interrupt and a timer to easily decode a NEC
IR remote. This same method can be applied to any IR remote controller. At this stage, | recommend
that you do a study of NEC IR protocol from here. SB-Project’s website is an excellent page for info as
such.

https://www.sbprojects.net/knowledge/ir/nec.php

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "LCD 2 Wire.h"

sync_high
sync_low
one_high
one_low
zero_high
zero_low

bit received;
unsigned char bits = 0;
unsigned int frames[33];

void setup(void);

void set Timer @(unsigned int value);
unsigned int get_Timer_©(void);

void erase_frames(void);

unsigned char decode(unsigned char start pos, unsigned char end pos);
void decode NEC(unsigned char *addr, unsigned char *cmd);
void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned char value);

void EXTIO ISR(void)

interrupt ©

{
frames[bits] = get Timer 0();
bits++;
set_TRO;

if(bits >= 33)
{
received = 1;
clr_EA;
clr_TRO;
}
set_Timer_0(0x0000);
P15 = ~P15;

void main(void)

{
unsigned char address
unsigned char command

setup();

while(1)
{
if(received)
{
decode NEC(&address, &command);
lcd print(13, 0, address);
lcd print(13, 1, command);
delay ms(100);
erase frames();
set_EA;

void setup(void)

{
erase_frames();
P15 PushPull Mode;
TIMERO _MODE1 ENABLE;
set_Timer_0(0x0000);
set_ITO;
set_EXO;
set_EA;

LCD_init();
LCD_clear_home();
LCD_goto(0, 9);

LCD putstr("Address:");
LCD _goto(@, 1);
LCD_putstr("Command:");

void set_Timer_@O(unsigned int value)
{
THO = ((value & OxFF@Q) >> 8);
TLO (value & Ox0Q0FF);

}

unsigned int get Timer O(void)
{
unsigned int value = 0x0000;
value = THO;
value <<= 8;
value |= TLO;

return value;

void erase_ frames(void)

for(bits = @; bits < 33; bits++)
{
frames[bits] = 0x0000;

}

set _Timer_ 0(0x0000) ;
received = 0;
bits = 0;

unsigned char decode(unsigned char start pos, unsigned char end_pos)

{

unsigned char value = 0;

for(bits = start pos; bits <= end _pos; bits++)

{

value <<= 1;

if((frames[bits] >= one_low) && (frames[bits] <= one_high))
{
value |= 1;

}

else if((frames[bits] >= zero_low) && (frames[bits] <= zero_high))
{
value |= 0;

}

else if((frames[bits] >= sync_low) && (frames[bits] <= sync_high))
{
return OXFF;
}
}

return value;

}

void decode_NEC(unsigned char *addr, unsigned char *cmd)
{

*addr = decode(2, 9);

*cmd = decode(18, 25);
}

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned char value)
{

LCD_goto(x_pos, y_pos);

LCD_putchar((value / 100) + 0x30);

LCD_goto((x_pos + 1), y_pos);

LCD putchar(((value % 10) / 10) + 0x30);

LCD_goto((x_pos + 2), y pos);

LCD_putchar((value % 10) + 0x30);

Schematic

o
s P05 LY po s/AIN4/TONCE/PWM2 IC3/PWM3/STADC/AINS/P0.4 P04 g sal
—P06 2.1 po6/AINTXD AINGICSPWMS/P03 fetl— P03 g spA
R2 _POT___ 3] pg7/AIN2/RXD [SCLYRXD_1 OCDCK/ICPCK/P02 fartS—P02
IK 20 L poo/rsT MISOAC4/PWM4/PO.1 L — FOL
i IS? RO—2L 5 p3 0/AINI/OSCINANTO TIMOSIICYPWM3P0.0 farbb P00
0.1uf + SW-EB_PIT_ 6] b1 /Aot SPCLK/AC/PWM2/PL 0 fodd— P10
I —GND_ 7 ¥ Ghp CLOAINTACPWMIPL1 fadd— P11
L —PI8 5.1 p| 6/OCDDA/ICPDA/TXD_1[SDA] icopwmopl 2 fatd— P12
GND 23 9% ¥ vpp [STADC/FB/SDAP1 3 fat2 P13
| - PIE_ 104 py sissncrpwms PWMI/FB/SDAP1 4 fatl—T14
% ~ B _
g N76E003
Explanation

A NEC transmission sends out 33 pulses. The first one is a sync bit and the rest 32 contain address and
command info. These 32 address and command bits can be divided into 4 groups —address, command,
inverted address and inverted command. The first 16 bits contain address and inverted address while
the rest contain command and inverted command. The inverted signals can be used against the non-
inverted ones for checking signal integrity.

We already know that IR data is received as a steam of pulses. Pulses represent sync bit or other info,
ones and zeros. In case of NEC IR protocol, the pulses have variable lengths. Sync bit represented by a
pulse of 9ms high and 4.5ms low — total pulse time is 13.5ms. Check the timing diagram below. Please
note that in this timing diagram the blue pulses are from the transmitter’s output and the yellow ones
are those received by the receiver. Clearly the pulses are inverted.

Logic one is represented by a pulse of 560us high time and 2.25ms of low time — total pulse time is
2.81ms. Likewise, logic zero is represented by a pulse of 560us high time and 1.12ms of low time —
total pulse time is 1.68ms.

Logic 0 Logic 1

These timings can vary slightly about 15 - 25% due to a number of factors like medium, temperature,
etc. Therefore, we can assume the following timings:

sianal Ideal Pulse Length Maximum Pulse Length Minimum Pulse
’ (ms) (ms) Length (ms)
Sync 13.5 16 10
High 2.81 33 2.2
Low 1.68 2 13

Now as per timing info and timing diagram we have to detect falling edges and time how long it takes
to detect another falling edge. In this way, we can time the received pulses and use the pulse time
info to decode a received signal.

In the demo, | used external interrupt channel EXTIO and Timer 0. The system clock frequency is set to
16MHz with HIRC. Timer 0 is set in Mode 1 and its counter is rest to O count. EXTIO is set to detect
falling edges. Note that the timer is set but not started.

TIMERO_MODE1_ ENABLE;
set_Timer_0(0x0000);
set_ITO;

set_EXO;
set_EA;

Also note that each tick of Timer 0 here is about:

)] Timer Prescalar 12
Timer Tick = = =0.75us
Fsys 16 MHz

Based on this tick info, we can deduce the maximum and minimum pulse durations as like:

sync_high 22000 // 22000 x ©.75ms
sync_low 14000 // 14000 x 0.75ms

one_high 3600 // 3600 x ©.75ms
one_low 2400 // 2400 x ©.75ms

#tdefine zero_high 1800 // 1800 x ©.75ms

#tdefine zero_low 1200 // 1200 x ©.75ms

Now when an IR transmission is received, an interrupt will be triggered. Therefore, in the ISR, we
immediately capture the timer’s tick count and reset it. When all 33 pulses have been received this
way, we temporarily halt all interrupts by disabling the global interrupt and stop the timer in order to
decode the received signal. P15 is also toggled to demonstrate reception.

void EXTI@ ISR(void)

interrupt ©

{
frames[bits] = get_Timer_0();
bits++;
set_TRO;

if(bits >= 33)
{
received = 1;
clr EA;
clr _TRO;
}
set Timer_ 0(0x0000) ;
P15 = ~P15;

Now the signal is decoded in the decode function. This function scans a fixed length of time frames for
sync, ones and zeros and return the value obtained by scanning the time info of the pulses. In this
way, a received signal is decoded.

unsigned char decode(unsigned char start_pos, unsigned char end_pos)

{
unsigned char value
for(bits = start_pos; bits <= end_pos; bits++)

{

value <<= 1;
if((frames[bits] >= one_low) && (frames[bits] <= one_high))

value |= 1;

}

else if((frames[bits] >= zero_low) && (frames[bits] <= zero_high))

{
}

value |= ©;

else if((frames[bits] >= sync_low) && (frames[bits] <= sync_high))
{

return OXxFF;

}
}

return value;

}

In the main loop, the decode info are displayed on a text LCD.

Demo

HOHDHHDD
AHOOOOEHES
0005330

Demo video: https://youtu.be/9xFYY9zVkFQ

Epilogue

After going through all these topics and exploring the N76E003 to the finest details, | have to say that
just like flagship killer cell phones, this is a flagship killer 8-bit microcontroller. In terms of price vs

https://youtu.be/9xFYY9zVkFQ

feature ratio, it is a winner. I’'m truly impressed by its performance and hardware features. It offers
something like an 8051 but with more advanced modern features. Old-school 8051 users will surely
love to play with it.

Every day we talk about software piracy and hacking but little effort is done to prevent them. Students,
hobbyists and low-profile business houses can’t afford to use the expensive Keil/IAR compiler. They
often go for pirated versions of these software and this is a very wrong path to follow. Like | said in
my first post on N76E003, Nuvoton has rooms for making its devices more popular by investing on a
compiler of its own or at least start doing something with free Eclipse-IDE.

All files and code examples related to Keil compiler can be downloaded from here.
All files and code examples related to IAR compiler can be downloaded from here.

Youtube playlist.

Happy coding.

Author: Shawon M. Shahryiar

https://www.youtube.com/user/sshahryiar

https://www.facebook.com/qgroups/microarena

https://www.facebook.com/MicroArena 06.08.2018

https://drive.google.com/open?id=1rLNJWHODC2I4-iQGLyWpdU47Md1WZ0aP
https://drive.google.com/open?id=14I3QgGq_KVMD2FVax4jNRXkTau_1jgPn
https://www.youtube.com/watch?v=xZ5gkk6WQpw&list=PL-EErZRpDPIXmXL_Oo9v1j2PD8scq3VkW
https://www.youtube.com/user/sshahryiar
https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

	N76E003 vs STM8S003
	Hardware Tools
	Software Tools
	How to get started?
	Nuvoton Files
	About the N76E006 Test Board
	Coding Nuvoton N76E003
	General Purpose Input-Output (GPIO)
	Code
	Schematic
	Explanation
	Demo

	Driving 2x16 LCD
	Code
	lcd.h
	lcd.c
	main.c

	Schematic
	Explanation
	Demo

	Driving 2x16 LCD with Software SPI
	Code
	LCD_3_Wire.h
	LCD_3_Wire.c
	main.c

	Schematic
	Explanation
	Demo

	Driving 2x16 LCD with Software I2C
	Code
	SW_I2C.h
	SW_I2C.c
	PCF8574.h
	PCF8574.c
	LCD_2_Wire.h
	LCD_2_Wire.c
	main.c

	Schematic
	Explanation
	Demo

	Driving seven Segments by Bit-banging TM1640
	Code
	fonts.h
	TM1640.h
	TM1640.c
	main.c

	Schematic
	Explanation
	Demo

	External Interrupt (EXTI)
	Code
	Schematic
	Explanation
	Demo

	Pin Interrupt – Interfacing Rotary Encoder
	Code
	Schematic
	Explanation
	Demo

	Clock System
	Code
	Schematic
	Explanation
	Demo

	12-Bit ADC – LM35 Thermometer
	Code
	Schematic
	Explanation
	Demo

	ADC Interrupt – LDR-based Light Sensor
	Code
	Schematic
	Explanation
	Demo

	ADC Comparator
	Code
	Schematic
	Explanation
	Demo

	Data Flash – Using APROM as EEPROM
	Code
	Flash.h
	Flash.c
	main.c

	Schematic
	Explanation
	Demo

	Overview of N76E003 Timers
	Timer 0 – Time base Generation
	Code
	Schematic
	Explanation
	Demo

	Timer 1 – Stopwatch
	Code
	Schematic
	Explanation
	Demo

	Timer 2 Input Capture – Frequency Counter
	Code
	Schematic
	Explanation
	Demo

	Timer 2 Pulse Width Capture – Interfacing HC-SR04 SONAR
	Code
	Schematic
	Explanation
	Demo

	Timer 3 – Driving 7 Segments, LED and Scanning Keypad
	Code
	Schematic
	Explanation
	Demo

	Simple PWM – RGB LED Fading
	Code
	Schematic
	Explanation
	Demo

	Complementary PWM with Dead Time
	Code
	Schematic
	Explanation
	Demo

	Wakeup Timer and Power Modes
	Code
	Schematic
	Explanation
	Demo

	Watchdog Timer
	Code
	Schematic
	Explanation
	Demo

	Communication Peripheral Overview
	Serial Communication - UART
	Code
	HMC1022.h
	HMC1022.c
	main.c

	Schematic
	Explanation
	Demo

	UART Interrupt
	Code
	Schematic
	Explanation
	Demo

	Inter-Integrated Circuit (I2C) – Interfacing DS1307 I2C RTC
	Code
	I2C.h
	I2C.c
	DS1307.h
	DS1307.c
	main.c

	Schematic
	Explanation
	Demo

	Serial Peripheral Interface (SPI) – Interfacing MAX7219 and MAX6675
	Code
	MAX72xx.h
	MAX72xx.c
	MAX6675.h
	MAX6675.c
	main.c

	Schematic
	Explanation
	Demo

	One Wire (OW) Communication – Interfacing DHT11
	Code
	DHT11.h
	DHT11.c
	main.c

	Schematic
	Explanation
	Demo

	One Wire (OW) Communication – Interfacing DS18B20
	Code
	one_wire.h
	one_wire.c
	DS18B20.h
	DS18B20.c
	main.c

	Schematic
	Explanation
	Demo

	Decoding NEC IR Remote Protocol
	Code
	Schematic
	Explanation
	Demo

	Epilogue

