
Getting Started with Nuvoton 8-bit

Microcontrollers – N76E003

Many of us who are involved in the embedded system industry like 8-bit microcontrollers. They are

cheap, easy to use and solve most of the common automation problems. 32-bit micros are in that

contrast expensive and are mainly intended for advance-level works that cannot be solved with 8-bit

micros. Thus, 32-bit micros are not much demanding as the 8-bit ones. In most places, 8051s, AVRs

and PICs are the most used 8-bit micros. The popular Arduino platform is mainly based on 8-bit AVR

micros. However, these are not the only 8-bit micros of the whole embedded world. Nuvoton - a

Taiwan-based semiconductor manufacturer, is one such company that has its own flavour of 8-bit and

32-bit micros. The 8-bit micros from Nuvoton are based on the popular 8051 architectures. In this

series of articles, we will be discovering Nuvoton N76E003 1T-8051-based microcontroller.

N76E003 vs STM8S003

http://www.nuvoton.com/

In terms of outlook, part numbering, pin layout and other basic features, N76E003 looks like a cheap

Chinese copy of STMicroelectronics’ STM8S003. However, as we all know, looks can be deceptive.

Though several similarities, N76E003 is not a replica of STM8S003 in any way. In fact, in terms of

architecture and some hardware features, N76E003 varies a lot from STM8S003. For instance, the

processor core of these chips is not same. Even after having same pin layouts, N76E003 has several

additional hardware than STM8S003, for instance 8 channel - 12-bit ADC.

The table below summarizes an actual comparison of these chips.

It is a good idea to consider N76E003 as an advanced 8051 micro in STM8S003 form-factor and having

several similarities with the STM8S003.

Hardware Tools

To get started only two things are needed – a prototyping/development board and a programmer

called NuLink. There are two options either you can buy the expensive official NuTiny SDK boards with

built-in NULink programmer/debugger or you can buy the cheap unofficial ones as shown below.

My personal choice is the unofficial one.

Software Tools

Despite Nuvoton being a giant in manufacturing some of the industry’s coolest chips, it greatly lags in

terms of software tools. Unlike other manufacturers like STMicroelectronics and Microchip, Nuvoton

doesn’t have a free C compiler of its own. To use Nuvoton 8-bit micros, we have to use either Keil

Micro Vision or IAR Embedded Workbench. Both industry-standard tools but are not free. However,

there are trial and evaluation versions of these tools.

The next stuffs that we will be needing are device datasheet, drivers, GUI for NuLink and sample codes

with Nuvoton’s official header and source files. These are available here.

http://www.keil.com/
http://www.keil.com/
https://www.iar.com/iar-embedded-workbench/
http://www.nuvoton.com/hq/products/microcontrollers/8bit-8051-mcus/low-pin-count-8051-series/n76e003/?__locale=en

We will also be needing a pin map because there are few pins in N76E003 and they have multiple

functions.

How to get started?

I have made two videos – one for Keil and the other for IAR. These videos show in details how to start

building projects with N76E003 using these compilers.

https://www.youtube.com/watch?v=hJ-SyFDZ8go

https://www.youtube.com/watch?v=xZ5gkk6WQpw

Nuvoton Files

No matter which compiler you use ultimately, you’ll need the following header (.h) and source files

(.c) to get things done properly.

Now what these files do? These files make up something like a standard peripheral library. They define

registers and functions that are needed to simplify coding. For instance, the Delay files dictate the

software delay functions by using hardware timers. Likewise, SFR_Macro and Function_Define files

define hardware-based functions and SFR uses. I highly recommend going through the files.

https://www.youtube.com/watch?v=hJ-SyFDZ8go
https://www.youtube.com/watch?v=xZ5gkk6WQpw

About the N76E006 Test Board

Shown below are the actual photo, the PCB layout and the schematic of the unofficial cheap N76E003

test/development board. This is the board I will be using in this tutorial series.

There is nothing much about the 30mm x 43.5mm board. Everything is visible and neat. However,

having the schematic alongside the board layout in possession is a great advantage. There are two

sidewise header that bring out the GPIO pins and positive supply rails. There is another header

opposite to the USB port. This header is for connecting a Nulink programmer-debugger interface and

it also has a serial port interface brought out straight from the N76E003 chip. This serial port is useful

for quickly debugging/testing stuffs with a serial port monitor. There is an LED connected with P15 pin

via a computer jumper. The only thing that is wrong in this board is the crystal resonator part. N76E003

has an external clock input pin but it is meant to be used with active oscillators/crystal modules. In

the official, SDK there is no such points to connect an external crystal resonator. The internal high

frequency oscillator is accurate enough for most cases.

At this point, I would like to thank Electro Dragon for these images because they are the only ones

who shared these resources online.

Shown below is the official SDK board’s schematic:

Coding Nuvoton N76E003

When entering a new environment, things are not very easy at first. It takes times to get acquainted

with new the new environment, new tools and new stuffs. New means everything different from the

ones that you have been using prior to its introduction. In many occasions, I had trouble playing with

new microcontrollers due to this. However, after some decent play offs things unfolded themselves.

President JFK’s speech on lunar landing should be an inspirational note for everyone who is trying to

do something new or something that he/she has never done before:

 “We choose to go to the Moon in this decade and do the other things, not because they are easy, but

because they are hard; because that goal will serve to organize and measure the best of our energies

and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone,

and one we intend to win, and the others, too.”

Both Keil and IAR are excellent tools for coding Nuvoton MCUs. I have used both and everything is

same in both cases. Literally there is no difference at all. I won’t recommend which one to use and I

leave the choice to the readers. However, there are some areas where you may find difficulty porting

codes of one compiler to the other. The table below summarizes some of these differences.

Component Keil IAR

Interrupt Vector

Interrupt vector number, e.g.

void EXT_INT0(void)
interrupt 0
{
}

Interrupt vector address, e.g.

#pragma vector = 0x00
__interrupt void EXTI0(void)
{
}

String Array for
LCD Libraries

static char txt[] =
{"MICROARENA"};

const char txt[] =
{"MICROARENA"};

Adding Assembly
Code

#pragma asm
 nop;
#pragma endasm

or simply:

nop;

asm("nop");

N76E003 Header
File

#include "N76E003_iar.h" #include "N76E003.h"

Memory Specifier

unsigned char code *a;
unsigned char xdata *b;

unsigned char __code *a;
unsigned char __xdata *b;

Apart from these facts, you’ll notice that the N76E003 BSPs don’t contain any software-based delay

libraries unlike other compilers. Nuvoton BSPs are rather equipped with accurate timer-based delay

libraries but personally I like software delays since they offer more flexibility, cross-environment

compatibility, less coding and don’t use anything except CPU cycles. Don’t worry, I have developed a

reasonably accurate software delay library.

Two more things I would like to highlight here. Firstly, both Keil and IAR compiler can throw some

errors during code compilations. Most of these errors are due to BSP definitions. One such error is in

the line below:

#define set_P0S_6

BIT_TMP=EA;TA=0xAA;TA=0x55;SFRS=0x01;P0S|=SET_BIT6;TA=0xAA;TA=0x55;SFRS=0x00;EA=BIT_TMP

If you try to use set_P0S_6 definition, IAR sometimes throws an error because it can’t find BIT_TMP.

However, there are other similar definitions that don’t throw such error and in Keil you won’t notice

something like this. Such things are nasty illogical surprizes. We have to understand that the BSPs are

still in development. Always remember that the datasheet is your friend. I suggest that when you try

out the examples I have shown here, you read the relevant parts of the datasheet to enhance learning

and understanding.

The other thing to note is the fact that not always we have the luxury to avoid register-level coding
and so when needed we must have the right knowledge to use them. We can also use bit-level
manipulations as shown below:

//For setting a bit of a register
#define bit_set(reg, bit_val) reg |= (1 << bit_val)

//For clearing a bit of a register
#define bit_clr(reg, bit_val) reg &= (~(1 << bit_val))

//For toggling a bit of a register
#define bit_tgl(reg, bit_val) reg ^= (1 << bit_val)

//For extracting the bit state of a register
#define get_bit(reg, bit_val) (reg & (1 << bit_val))

//For extracting masked bits of a register
#define get_reg(reg, msk) (reg & msk)

Sometimes but not always, we have to code things the old ways. Sometimes mixing assembly code
with C code becomes a necessity. For instance, the software delay library uses this concept.

There are other aspects to consider too like case sensitivity and coding conventions. It is wise to
choose interrupt-driven methods over polling-based ones. Codes should be included in hierarchical
orders. Like such there are tons of stuffs to make your code smart and error-free. The best source of
knowledge of such things and much more are app notes of various manufacturers.

Whenever making a new library, add the followings in your library’s source code along with other

header files of your choice to avoid errors and nasty surprizes:

#include "N76E003.h" //for Keil compiler or “N76E003_IAR.h” for IAR compiler
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"

Additionally, I have made a set of files called “Extended_Functions”. Here I added all the functions

that we will need almost every time when we deal with common internal hardware like timers, ADC,

etc. These files are like repositories of all the additional functions that I made for some internal

hardware – something that Nuvoton didn’t provide and something that makes coding lot easier.

Here I'm sharing two videos to demonstrate how to code and add custom-made library files in both

Keil C51 and IAR Embedded-Workbench.

https://youtu.be/m1roxhCM6T8

https://youtu.be/p_dvXF4zmqI

https://youtu.be/m1roxhCM6T8
https://youtu.be/p_dvXF4zmqI

General Purpose Input-Output (GPIO)

GPIOs are the most common hardware that we use in a microcontroller. Since N76E003 is based on

8051 architecture, we should be getting some similarities with the old school 8051s. Shown below is

the hardware schematic of N76E003’s GPIO block:

On close inspection, we can realize that this structure has striking resemblance with the GPIO structure

of a typical 8051 microcontroller as shown below:

Thus, we can expect similar behaviour.

There are four GPIO modes and these are as follows:

PxM1.n PxM2.n I/O Type Description

0 0 Quasi-
Bidirectional

An I/O in this mode is both an input and output. It behaves just
like the ordinary I/O of a typical 8051 micro.

0 1 Push – Pull
I/O

This mode is same as the first one but with stronger current
sourcing capability and is recommended when making outputs.

1 0 Input Only
Mode

This mode is intended for low power high impedance inputs
unlike other modes.

1 1 Open-drain
I/O

As the name suggests, it is same as Quasi bidirectional mode
but with open-drain output that can sink current only.

PxM1.n and PxM2.n bits decide these modes. For most cases, we can stick to push-pull and input

modes as they are the most commonly used ones.

Code

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"

void setup(void);

void main(void)
{
 setup();

 while(1)
 {
 if(P05 != 0x00)
 {
 Timer0_Delay1ms(900);
 }

 set_P15;
 Timer0_Delay1ms(100);
 clr_P15;
 Timer0_Delay1ms(100);
 };
}

void setup(void)
{
 P15_PushPull_Mode;
 P05_Input_Mode;
}

Schematic

Explanation

The Function_define BSP header file states GPIO modes as follows:

//------------------- Define Port as Quasi mode -----------------------
#define P00_Quasi_Mode P0M1&=~SET_BIT0;P0M2&=~SET_BIT0
....
//------------------- Define Port as Push Pull mode -------------------
#define P00_PushPull_Mode P0M1&=~SET_BIT0;P0M2|=SET_BIT0
....
//------------------- Define Port as Input Only mode ------------------
#define P00_Input_Mode P0M1|=SET_BIT0;P0M2&=~SET_BIT0
....
//-------------------Define Port as Open Drain mode -------------------
#define P00_OpenDrain_Mode P0M1|=SET_BIT0;P0M2|=SET_BIT0
....
//--------- Define all port as quasi mode ---------
#define Set_All_GPIO_Quasi_Mode P0M1=0;P0M1=0;P1M1=0;P1M2=0;P3M1=0;P3M2=0;

Like any definitions, we can straight call these in our coding and avoid clumsy register coding.

Similarly, SFR_Macro BSP header file defines the bit-level setting of all N76E003 registers. To set the

logic level of GPIO pins we can use the following definitions:

//------------------- Define Port Pin Logic High State ------------------
#define set_P00 P00 = 1
....
//------------------- Define Port Pin Logic Low State -------------------
#define clr_P00 P00 = 0
....

However, these don’t restrict us from using classical register-level coding. N76E003 header file states

all the registers present in it.

For port/pin reading I didn’t see any function definition as like one I already discussed. Thus, there are

two ways to do it on your own. The following as two examples of such:

//--------- Bit-level Read ---------
if (P04 != 0)
{
}
else
{
}

//--------- Port-level Read ---------
if ((P0 & SET_BIT4) != 0)
{
}
else
{
}

The demo here is a simple one. The onboard LED connected to P15 pin is toggled at a fixed interval.

When a button connected to P05 is pressed the off time of the LED is increased, affecting toggle rate.

Demo

Demo video: https://youtu.be/Y215BXukqBk

https://youtu.be/Y215BXukqBk

Driving 2x16 LCD

Driving alphanumeric/text LCDs requires no special hardware as simple manipulation of GPIO pins and

understanding of their working principle are all that are needed.

Code

lcd.h

#define LCD_GPIO_init() do{P00_PushPull_Mode;
P01_PushPull_Mode; P10_PushPull_Mode; P11_PushPull_Mode; P12_PushPull_Mode;
P13_PushPull_Mode;}while(0)

#define LCD_RS_HIGH set_P00
#define LCD_RS_LOW clr_P00

#define LCD_EN_HIGH set_P01
#define LCD_EN_LOW clr_P01

#define LCD_DB4_HIGH set_P10
#define LCD_DB4_LOW clr_P10

#define LCD_DB5_HIGH set_P11
#define LCD_DB5_LOW clr_P11

#define LCD_DB6_HIGH set_P12
#define LCD_DB6_LOW clr_P12

#define LCD_DB7_HIGH set_P13
#define LCD_DB7_LOW clr_P13

#define clear_display 0x01
#define goto_home 0x02

#define cursor_direction_inc (0x04 | 0x02)
#define cursor_direction_dec (0x04 | 0x00)
#define display_shift (0x04 | 0x01)
#define display_no_shift (0x04 | 0x00)

#define display_on (0x08 | 0x04)
#define display_off (0x08 | 0x02)
#define cursor_on (0x08 | 0x02)
#define cursor_off (0x08 | 0x00)
#define blink_on (0x08 | 0x01)
#define blink_off (0x08 | 0x00)

#define _8_pin_interface (0x20 | 0x10)
#define _4_pin_interface (0x20 | 0x00)
#define _2_row_display (0x20 | 0x08)
#define _1_row_display (0x20 | 0x00)
#define _5x10_dots (0x20 | 0x40)
#define _5x7_dots (0x20 | 0x00)

#define DAT 1
#define CMD 0

void LCD_init(void);
void LCD_send(unsigned char value, unsigned char mode);
void LCD_4bit_send(unsigned char lcd_data);
void LCD_putstr(char *lcd_string);
void LCD_putchar(char char_data);
void LCD_clear_home(void);
void LCD_goto(unsigned char x_pos, unsigned char y_pos);
void toggle_EN_pin(void);

lcd.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "lcd.h"

void LCD_init(void)
{
 Timer0_Delay1ms(10);

 LCD_GPIO_init();

 Timer0_Delay1ms(100);

 toggle_EN_pin();

 LCD_RS_LOW;

 LCD_DB7_LOW;
 LCD_DB6_LOW;
 LCD_DB5_HIGH;
 LCD_DB4_HIGH;

 toggle_EN_pin();

 LCD_DB7_LOW;
 LCD_DB6_LOW;
 LCD_DB5_HIGH;
 LCD_DB4_HIGH;

 toggle_EN_pin();

 LCD_DB7_LOW;
 LCD_DB6_LOW;
 LCD_DB5_HIGH;
 LCD_DB4_HIGH;

 toggle_EN_pin();

 LCD_DB7_LOW;
 LCD_DB6_LOW;
 LCD_DB5_HIGH;
 LCD_DB4_LOW;

 toggle_EN_pin();

 LCD_send((_4_pin_interface | _2_row_display | _5x7_dots), CMD);
 LCD_send((display_on | cursor_off | blink_off), CMD);
 LCD_send(clear_display, CMD);
 LCD_send((cursor_direction_inc | display_no_shift), CMD);
}

void LCD_send(unsigned char value, unsigned char mode)
{
 switch(mode)
 {
 case DAT:
 {
 LCD_RS_HIGH;
 break;
 }
 case CMD:
 {
 LCD_RS_LOW;
 break;
 }
 }

 LCD_4bit_send(value);
}

void LCD_4bit_send(unsigned char lcd_data)
{
 unsigned char temp = 0;

 temp = ((lcd_data & 0x80) >> 7);

 switch(temp)

 {
 case 1:
 {
 LCD_DB7_HIGH;
 break;
 }
 default:
 {
 LCD_DB7_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x40) >> 6);

 switch(temp)
 {
 case 1:
 {
 LCD_DB6_HIGH;
 break;
 }
 default:
 {
 LCD_DB6_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x20) >> 5);

 switch(temp)
 {
 case 1:
 {
 LCD_DB5_HIGH;
 break;
 }
 default:
 {
 LCD_DB5_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x10) >> 4);

 switch(temp)
 {
 case 1:
 {
 LCD_DB4_HIGH;
 break;
 }
 default:
 {

 LCD_DB4_LOW;
 break;
 }
 }

 toggle_EN_pin();

 temp = ((lcd_data & 0x08) >> 3);

 switch(temp)
 {
 case 1:
 {
 LCD_DB7_HIGH;
 break;
 }
 default:
 {
 LCD_DB7_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x04) >> 2);

 switch(temp)
 {
 case 1:
 {
 LCD_DB6_HIGH;
 break;
 }
 default:
 {
 LCD_DB6_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x02) >> 1);

 switch(temp)
 {
 case 1:
 {
 LCD_DB5_HIGH;
 break;
 }
 default:
 {
 LCD_DB5_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x01));

 switch(temp)
 {
 case 1:
 {
 LCD_DB4_HIGH;
 break;
 }
 default:
 {
 LCD_DB4_LOW;
 break;
 }
 }

 toggle_EN_pin();
}

void LCD_putstr(char *lcd_string)
{
 do
 {
 LCD_send(*lcd_string++, DAT);
 }while(*lcd_string != '\0');
}

void LCD_putchar(char char_data)
{
 LCD_send(char_data, DAT);
}

void LCD_clear_home(void)
{
 LCD_send(clear_display, CMD);
 LCD_send(goto_home, CMD);
}

void LCD_goto(unsigned char x_pos, unsigned char y_pos)
{
 if(y_pos == 0)
 {
 LCD_send((0x80 | x_pos), CMD);
 }
 else
 {
 LCD_send((0x80 | 0x40 | x_pos), CMD);
 }
}

void toggle_EN_pin(void)
{

 LCD_EN_HIGH;
 Timer0_Delay1ms(4);
 LCD_EN_LOW;
 Timer0_Delay1ms(4);
}

main.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "lcd.h"

void show_value(unsigned char value);

void main(void)
{
 unsigned char s = 0;

 const char txt1[] = {"MICROARENA"};
 const char txt2[] = {"SShahryiar"};
 const char txt3[] = {"Nuvoton 8-bit uC"};
 const char txt4[] = {"N76E003"};

 LCD_init();

 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);
 LCD_goto(3, 1);
 LCD_putstr(txt2);
 Timer3_Delay100ms(30);

 LCD_clear_home();

 for(s = 0; s < 16; s++)
 {
 LCD_goto(s, 0);
 LCD_putchar(txt3[s]);
 Timer0_Delay1ms(90);
 }

 Timer3_Delay100ms(20);

 for(s = 0; s < 7; s++)
 {
 LCD_goto((4 + s), 1);
 LCD_putchar(txt4[s]);
 Timer0_Delay1ms(90);
 }

 Timer3_Delay100ms(30);

 s = 0;
 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);

 while(1)
 {
 show_value(s);
 s++;
 Timer3_Delay100ms(4);
 };
}

void show_value(unsigned char value)
{
 unsigned char ch = 0x00;

 ch = ((value / 100) + 0x30);
 LCD_goto(6, 1);
 LCD_putchar(ch);

 ch = (((value / 10) % 10) + 0x30);
 LCD_goto(7, 1);
 LCD_putchar(ch);

 ch = ((value % 10) + 0x30);
 LCD_goto(8, 1);
 LCD_putchar(ch);
}

Schematic

Explanation

There is nothing to explain here. The LCD driver is based on simple manipulation of GPIO pins. The

codes for the LCD are coded using all available info on LCD datasheet - just initialization and working

principle. If you need to change GPIO pins just edit the following lines in the LCD header file:

#define LCD_GPIO_init() do{P00_PushPull_Mode;
P01_PushPull_Mode; P10_PushPull_Mode; P11_PushPull_Mode; P12_PushPull_Mode;
P13_PushPull_Mode;}while(0)

#define LCD_RS_HIGH set_P00
#define LCD_RS_LOW clr_P00

#define LCD_EN_HIGH set_P01
#define LCD_EN_LOW clr_P01

#define LCD_DB4_HIGH set_P10
#define LCD_DB4_LOW clr_P10

#define LCD_DB5_HIGH set_P11
#define LCD_DB5_LOW clr_P11

#define LCD_DB6_HIGH set_P12
#define LCD_DB6_LOW clr_P12

#define LCD_DB7_HIGH set_P13
#define LCD_DB7_LOW clr_P13

Demo

Demo video: https://youtu.be/RsetFrAffok

https://youtu.be/RsetFrAffok

Driving 2x16 LCD with Software SPI

One problem with alphanumeric LCDs and GLCDs is the number of GPIOs needed to connect so with

host micros. For a small micro like N76E003, each GPIO pin is like a gem and we can't afford to use too

many GPIO pins for an LCD. The solution to this problem is to use SPI/I2C-based LCD drivers that

significantly reduce GPIO pin requirement. Implementing software-based SPI/I2C for such LCD drivers

is also both easy and universal since these solutions don't need hardware SPI/I2C ports. Since the

SPI/I2C functionality is software emulated, any set of GPIO pins can be used – another advantage.

In this segment, we will be driving a 2x16 LCD with CD4094B Serial-In-Parallel-Out (SIPO) shift register

using software SPI. The same idea can be used for other similar shift registers like 74HC595. There are

other ways of using SPI-based LCDs but the aforementioned are the cheapest ways.

Code

LCD_3_Wire.h

#define LCD_GPIO_init() do{P02_PushPull_Mode;
P03_PushPull_Mode; P04_PushPull_Mode;}while(0)

#define LCD_SDO_HIGH() set_P00
#define LCD_SDO_LOW() clr_P00

#define LCD_SCK_HIGH() set_P01
#define LCD_SCK_LOW() clr_P01

#define LCD_STB_HIGH() set_P02
#define LCD_STB_LOW() clr_P02

#define DAT 1
#define CMD 0

#define clear_display 0x01
#define goto_home 0x02

#define cursor_direction_inc (0x04 | 0x02)
#define cursor_direction_dec (0x04 | 0x00)
#define display_shift (0x04 | 0x01)

#define display_no_shift (0x04 | 0x00)

#define display_on (0x08 | 0x04)
#define display_off (0x08 | 0x02)
#define cursor_on (0x08 | 0x02)
#define cursor_off (0x08 | 0x00)
#define blink_on (0x08 | 0x01)
#define blink_off (0x08 | 0x00)

#define _8_pin_interface (0x20 | 0x10)
#define _4_pin_interface (0x20 | 0x00)
#define _2_row_display (0x20 | 0x08)
#define _1_row_display (0x20 | 0x00)
#define _5x10_dots (0x20 | 0x40)
#define _5x7_dots (0x20 | 0x00)

extern unsigned char data_value;

void SIPO(void);
void LCD_init(void);
void LCD_toggle_EN(void);
void LCD_send(unsigned char value, unsigned char mode);
void LCD_4bit_send(unsigned char lcd_data);
void LCD_putstr(char *lcd_string);
void LCD_putchar(char char_data);
void LCD_clear_home(void);
void LCD_goto(unsigned char x_pos, unsigned char y_pos);

LCD_3_Wire.c

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_3_Wire.h"

unsigned char data_value;

void SIPO(void)
{
 unsigned char bit_value = 0x00;
 unsigned char clk = 0x08;
 unsigned char temp = 0x00;

 temp = data_value;
 LCD_STB_LOW();

 while(clk > 0)
 {
 bit_value = ((temp & 0x80) >> 0x07);
 bit_value &= 0x01;

 switch(bit_value)
 {
 case 0:
 {
 LCD_SDO_LOW();
 break;
 }
 default:
 {
 LCD_SDO_HIGH();
 break;
 }
 }

 LCD_SCK_HIGH();

 temp <<= 0x01;
 clk--;

 LCD_SCK_LOW();
 };

 LCD_STB_HIGH();
}

void LCD_init(void)
{
 Timer0_Delay1ms(10);

 LCD_GPIO_init();

 Timer0_Delay1ms(10);

 data_value = 0x08;
 SIPO();
 Timer0_Delay1ms(10);

 LCD_send(0x33, CMD);
 LCD_send(0x32, CMD);

 LCD_send((_4_pin_interface | _2_row_display | _5x7_dots), CMD);
 LCD_send((display_on | cursor_off | blink_off), CMD);
 LCD_send((clear_display), CMD);
 LCD_send((cursor_direction_inc | display_no_shift), CMD);
}

void LCD_toggle_EN(void)
{
 data_value |= 0x08;
 SIPO();
 Timer0_Delay1ms(2);
 data_value &= 0xF7;
 SIPO();

 Timer0_Delay1ms(2);
}

void LCD_send(unsigned char value, unsigned char mode)
{
 switch(mode)
 {
 case DAT:
 {
 data_value |= 0x04;
 break;
 }
 default:
 {
 data_value &= 0xFB;
 break;
 }
 }

 SIPO();
 LCD_4bit_send(value);
}

void LCD_4bit_send(unsigned char lcd_data)
{
 unsigned char temp = 0x00;

 temp = (lcd_data & 0xF0);
 data_value &= 0x0F;
 data_value |= temp;
 SIPO();
 LCD_toggle_EN();

 temp = (lcd_data & 0x0F);
 temp <<= 0x04;
 data_value &= 0x0F;
 data_value |= temp;
 SIPO();
 LCD_toggle_EN();
}

void LCD_putstr(char *lcd_string)
{
 while(*lcd_string != '\0')
 {
 LCD_putchar(*lcd_string++);
 }
}

void LCD_putchar(char char_data)
{
 if((char_data >= 0x20) && (char_data <= 0x7F))

 {
 LCD_send(char_data, DAT);
 }
}

void LCD_clear_home(void)
{
 LCD_send(clear_display, CMD);
 LCD_send(goto_home, CMD);
}

void LCD_goto(unsigned char x_pos,unsigned char y_pos)
{
 if(y_pos == 0)
 {
 LCD_send((0x80 | x_pos), CMD);
 }
 else
 {
 LCD_send((0x80 | 0x40 | x_pos), CMD);
 }
}

main.c

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_3_Wire.h"

void show_value(unsigned char value);

void main(void)
{
 unsigned char s = 0;

 static char txt1[] = {"MICROARENA"};
 static char txt2[] = {"SShahryiar"};
 static char txt3[] = {"Nuvoton 8-bit uC"};
 static char txt4[] = {"N76E003"};

 LCD_init();

 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);
 LCD_goto(3, 1);
 LCD_putstr(txt2);
 Timer3_Delay100ms(30);

 LCD_clear_home();

 for(s = 0; s < 16; s++)
 {
 LCD_goto(s, 0);
 LCD_putchar(txt3[s]);
 Timer0_Delay1ms(90);
 }

 Timer3_Delay100ms(20);

 for(s = 0; s < 7; s++)
 {
 LCD_goto((4 + s), 1);
 LCD_putchar(txt4[s]);
 Timer0_Delay1ms(90);
 }

 Timer3_Delay100ms(30);

 s = 0;
 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);

 while(1)
 {
 show_value(s);
 s++;
 Timer3_Delay100ms(4);
 };
}

void show_value(unsigned char value)
{
 unsigned char ch = 0x00;

 ch = ((value / 100) + 0x30);
 LCD_goto(6, 1);
 LCD_putchar(ch);

 ch = (((value / 10) % 10) + 0x30);
 LCD_goto(7, 1);
 LCD_putchar(ch);

 ch = ((value % 10) + 0x30);
 LCD_goto(8, 1);
 LCD_putchar(ch);
}

Schematic

Explanation

The code demoed here is same as the last LCD code and so there is not much to explain. The GPIO

operations of the LCD are handled using a CD4094B Serial-In-Parallel-Out (SIPO) shift register. This

shift register here acts like an output expander. With just three GPIOs we are able to interface a 4-bit

LCD that needs at least six GPIOs to work.

The SIPO function shown below simulates software-based SPI.

void SIPO(void)
{
 unsigned char bit_value = 0x00;
 unsigned char clk = 0x08;
 unsigned char temp = 0x00;

 temp = data_value;
 LCD_STB_LOW();

 while(clk > 0)
 {
 bit_value = ((temp & 0x80) >> 0x07);
 bit_value &= 0x01;

 switch(bit_value)
 {
 case 0:
 {
 LCD_SDO_LOW();
 break;
 }
 default:
 {
 LCD_SDO_HIGH();
 break;
 }
 }

 LCD_SCK_HIGH();

 temp <<= 0x01;

 clk--;

 LCD_SCK_LOW();
 };

 LCD_STB_HIGH();
}

To change pins, change the following the lines in the LCD_3_Wire header file:

#define LCD_GPIO_init() do{P02_PushPull_Mode;
P03_PushPull_Mode; P04_PushPull_Mode;}while(0)

#define LCD_SDO_HIGH() set_P00
#define LCD_SDO_LOW() clr_P00

#define LCD_SCK_HIGH() set_P01
#define LCD_SCK_LOW() clr_P01

#define LCD_STB_HIGH() set_P02
#define LCD_STB_LOW() clr_P02

Lastly, I have code two versions of this LCD library – one with BSP-based delays and the other with

software delays. Technically there’s no big change. The software-based one frees up a hardware timer

or two.

Demo

Demo video: https://youtu.be/F0-aeRM5VE4

https://youtu.be/F0-aeRM5VE4

Driving 2x16 LCD with Software I2C

We have already seen in the last segment how to use software SPI with a shift register to drive a 2x16

LCD. In this segment, we will explore the same concept with software I2C and PCF8574 I2C port

expander IC. There is a popular readymade module for such task and I used it here. The advantage of

I2C-based LCD over SPI-based LCD driver is the lesser number of GPIOs required compared to SPI-

based LCD. However, it is slower than SPI-based drivers.

Code

SW_I2C.h

#define SDA_DIR_OUT() P03_PushPull_Mode
#define SDA_DIR_IN() P03_Input_Mode

#define SCL_DIR_OUT() P04_PushPull_Mode
#define SCL_DIR_IN() P04_Input_Mode

#define SDA_HIGH() set_P03
#define SDA_LOW() clr_P03

#define SCL_HIGH() set_P04
#define SCL_LOW() clr_P04

#define SDA_IN() P03

#define I2C_ACK 0xFF
#define I2C_NACK 0x00

#define I2C_timeout 1000

void SW_I2C_init(void);
void SW_I2C_start(void);
void SW_I2C_stop(void);
unsigned char SW_I2C_read(unsigned char ack);
void SW_I2C_write(unsigned char value);
void SW_I2C_ACK_NACK(unsigned char mode);
unsigned char SW_I2C_wait_ACK(void);

SW_I2C.c

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "SW_I2C.h"

void SW_I2C_init(void)
{
 SDA_DIR_OUT();
 SCL_DIR_OUT();
 Timer0_Delay100us(1);
 SDA_HIGH();
 SCL_HIGH();
}

void SW_I2C_start(void)
{
 SDA_DIR_OUT();
 SDA_HIGH();
 SCL_HIGH();
 Timer3_Delay10us(4);
 SDA_LOW();
 Timer3_Delay10us(4);
 SCL_LOW();
}

void SW_I2C_stop(void)
{
 SDA_DIR_OUT();
 SDA_LOW();
 SCL_LOW();
 Timer3_Delay10us(4);
 SDA_HIGH();
 SCL_HIGH();
 Timer3_Delay10us(4);
}

unsigned char SW_I2C_read(unsigned char ack)
{
 unsigned char i = 8;
 unsigned char j = 0;

 SDA_DIR_IN();

 while(i > 0)
 {
 SCL_LOW();
 Timer3_Delay10us(2);
 SCL_HIGH();
 Timer3_Delay10us(2);
 j <<= 1;

 if(SDA_IN() != 0x00)
 {
 j++;
 }

 Timer3_Delay10us(1);
 i--;
 };

 switch(ack)
 {
 case I2C_ACK:
 {
 SW_I2C_ACK_NACK(I2C_ACK);;
 break;
 }
 default:
 {
 SW_I2C_ACK_NACK(I2C_NACK);;
 break;
 }
 }

 return j;
}

void SW_I2C_write(unsigned char value)
{
 unsigned char i = 8;

 SDA_DIR_OUT();
 SCL_LOW();

 while(i > 0)
 {
 if(((value & 0x80) >> 7) != 0x00)
 {
 SDA_HIGH();

 }
 else
 {
 SDA_LOW();
 }

 value <<= 1;
 Timer3_Delay10us(2);
 SCL_HIGH();
 Timer3_Delay10us(2);
 SCL_LOW();
 Timer3_Delay10us(2);
 i--;
 };
}

void SW_I2C_ACK_NACK(unsigned char mode)
{
 SCL_LOW();
 SDA_DIR_OUT();

 switch(mode)
 {
 case I2C_ACK:
 {
 SDA_LOW();
 break;
 }
 default:
 {
 SDA_HIGH();
 break;
 }
 }

 Timer3_Delay10us(2);
 SCL_HIGH();
 Timer3_Delay10us(2);
 SCL_LOW();
}

unsigned char SW_I2C_wait_ACK(void)
{
 signed int timeout = 0;

 SDA_DIR_IN();

 SDA_HIGH();
 Timer3_Delay10us(1);
 SCL_HIGH();
 Timer3_Delay10us(1);

 while(SDA_IN() != 0x00)
 {

 timeout++;

 if(timeout > I2C_timeout)
 {
 SW_I2C_stop();
 return 1;
 }
 };

 SCL_LOW();
 return 0;
}

PCF8574.h

#include "SW_I2C.h"

#define PCF8574_address 0x4E

#define PCF8574_write_cmd PCF8574_address
#define PCF8574_read_cmd (PCF8574_address | 1)

void PCF8574_init(void);
unsigned char PCF8574_read(void);
void PCF8574_write(unsigned char data_byte);

PCF8574.c

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "PCF8574.h"

void PCF8574_init(void)
{
 SW_I2C_init();
 Timer0_Delay1ms(20);
}

unsigned char PCF8574_read(void)
{
 unsigned char port_byte = 0;

 SW_I2C_start();
 SW_I2C_write(PCF8574_read_cmd);
 port_byte = SW_I2C_read(I2C_NACK);
 SW_I2C_stop();

 return port_byte;

}

void PCF8574_write(unsigned char data_byte)
{
 SW_I2C_start();
 SW_I2C_write(PCF8574_write_cmd);
 SW_I2C_ACK_NACK(I2C_ACK);
 SW_I2C_write(data_byte);
 SW_I2C_ACK_NACK(I2C_ACK);
 SW_I2C_stop();
}

LCD_2_Wire.h

#include "PCF8574.h"

#define clear_display 0x01
#define goto_home 0x02

#define cursor_direction_inc (0x04 | 0x02)
#define cursor_direction_dec (0x04 | 0x00)
#define display_shift (0x04 | 0x01)
#define display_no_shift (0x04 | 0x00)

#define display_on (0x08 | 0x04)
#define display_off (0x08 | 0x02)
#define cursor_on (0x08 | 0x02)
#define cursor_off (0x08 | 0x00)
#define blink_on (0x08 | 0x01)
#define blink_off (0x08 | 0x00)

#define _8_pin_interface (0x20 | 0x10)
#define _4_pin_interface (0x20 | 0x00)
#define _2_row_display (0x20 | 0x08)
#define _1_row_display (0x20 | 0x00)
#define _5x10_dots (0x20 | 0x40)
#define _5x7_dots (0x20 | 0x00)

#define BL_ON 1
#define BL_OFF 0

#define dly 2

#define DAT 1
#define CMD 0

void LCD_init(void);
void LCD_toggle_EN(void);
void LCD_send(unsigned char value, unsigned char mode);
void LCD_4bit_send(unsigned char lcd_data);
void LCD_putstr(char *lcd_string);
void LCD_putchar(char char_data);
void LCD_clear_home(void);

void LCD_goto(unsigned char x_pos, unsigned char y_pos);

LCD_2_Wire.c

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_2_Wire.h"

static unsigned char bl_state;
static unsigned char data_value;

void LCD_init(void)
{
 PCF8574_init();
 Timer0_Delay1ms(10);

 bl_state = BL_ON;
 data_value = 0x04;
 PCF8574_write(data_value);

 Timer0_Delay1ms(10);

 LCD_send(0x33, CMD);
 LCD_send(0x32, CMD);

 LCD_send((_4_pin_interface | _2_row_display | _5x7_dots), CMD);
 LCD_send((display_on | cursor_off | blink_off), CMD);
 LCD_send((clear_display), CMD);
 LCD_send((cursor_direction_inc | display_no_shift), CMD);
}

void LCD_toggle_EN(void)
{
 data_value |= 0x04;
 PCF8574_write(data_value);
 Timer0_Delay1ms(1);
 data_value &= 0xF9;
 PCF8574_write(data_value);
 Timer0_Delay1ms(1);
}

void LCD_send(unsigned char value, unsigned char mode)
{
 switch(mode)
 {
 case CMD:
 {
 data_value &= 0xF4;
 break;

 }
 case DAT:
 {
 data_value |= 0x01;
 break;
 }
 }

 switch(bl_state)
 {
 case BL_ON:
 {
 data_value |= 0x08;
 break;
 }
 case BL_OFF:
 {
 data_value &= 0xF7;
 break;
 }
 }

 PCF8574_write(data_value);
 LCD_4bit_send(value);
 Timer0_Delay1ms(1);
}

void LCD_4bit_send(unsigned char lcd_data)
{
 unsigned char temp = 0x00;

 temp = (lcd_data & 0xF0);
 data_value &= 0x0F;
 data_value |= temp;
 PCF8574_write(data_value);
 LCD_toggle_EN();

 temp = (lcd_data & 0x0F);
 temp <<= 0x04;
 data_value &= 0x0F;
 data_value |= temp;
 PCF8574_write(data_value);
 LCD_toggle_EN();
}

void LCD_putstr(char *lcd_string)
{
 do
 {
 LCD_putchar(*lcd_string++);
 }while(*lcd_string != '\0') ;
}

void LCD_putchar(char char_data)
{
 if((char_data >= 0x20) && (char_data <= 0x7F))
 {
 LCD_send(char_data, DAT);
 }
}

void LCD_clear_home(void)
{
 LCD_send(clear_display, CMD);
 LCD_send(goto_home, CMD);
}

void LCD_goto(unsigned char x_pos,unsigned char y_pos)
{
 if(y_pos == 0)
 {
 LCD_send((0x80 | x_pos), CMD);
 }
 else
 {
 LCD_send((0x80 | 0x40 | x_pos), CMD);
 }
}

main.c

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_2_Wire.h"

void show_value(unsigned char value);

void main(void)
{
 unsigned char s = 0;

 static char txt1[] = {"MICROARENA"};
 static char txt2[] = {"SShahryiar"};
 static char txt3[] = {"Nuvoton 8-bit uC"};
 static char txt4[] = {"N76E003"};

 LCD_init();

 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);

 LCD_goto(3, 1);
 LCD_putstr(txt2);
 Timer3_Delay100ms(30);

 LCD_clear_home();

 for(s = 0; s < 16; s++)
 {
 LCD_goto(s, 0);
 LCD_putchar(txt3[s]);
 Timer0_Delay1ms(90);
 }

 Timer3_Delay100ms(20);

 for(s = 0; s < 7; s++)
 {
 LCD_goto((4 + s), 1);
 LCD_putchar(txt4[s]);
 Timer0_Delay1ms(90);
 }

 Timer3_Delay100ms(30);

 s = 0;
 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);

 while(1)
 {
 show_value(s);
 s++;
 Timer3_Delay100ms(4);
 };
}

void show_value(unsigned char value)
{
 unsigned char ch = 0x00;

 ch = ((value / 100) + 0x30);
 LCD_goto(6, 1);
 LCD_putchar(ch);

 ch = (((value / 10) % 10) + 0x30);
 LCD_goto(7, 1);
 LCD_putchar(ch);

 ch = ((value % 10) + 0x30);
 LCD_goto(8, 1);
 LCD_putchar(ch);
}

Schematic

Explanation

Just like the last example, software method is used to emulate I2C protocol using ordinary GPIOs.

There are three parts of the code – first the software I2C driver, second the driver library for PCF8574

I2C 8-bit port expander and lastly the LCD driver itself. The LCD driver is same as the other LCD drivers

in this document. I kept the code modular so that it is easy to understand the role of each piece of

code. The I2C driver (SW_I2C) implements software I2C which is used by the PCF8574 driver. Thus, the

port expander driver is dependent on the SW_I2C driver and the LCD driver is dependent on the port

expander driver, and in cases like such we must find add libraries according to the order of

dependency.

The advantage of keeping things modular is to easily modify things in a fast and trouble-free manner

while keeping things ready for other deployments. In my codes I try to avoid repetitive and

meaningless stuffs with meaningful definitions. For instance, just change the following lines to change

pin configurations without going through the whole code:

#define SDA_DIR_OUT() P03_PushPull_Mode
#define SDA_DIR_IN() P03_Input_Mode

#define SCL_DIR_OUT() P04_PushPull_Mode
#define SCL_DIR_IN() P04_Input_Mode

#define SDA_HIGH() set_P03
#define SDA_LOW() clr_P03

#define SCL_HIGH() set_P04
#define SCL_LOW() clr_P04

#define SDA_IN() P03

Likewise, the SW_I2C functions are not implemented inside the LCD or port expander driver files so

that they can be used for other I2C devices.

I have code two versions of this LCD library just like the SPI-based ones – one with BSP-based delays

and the other with software delays.

Demo

Demo video: https://youtu.be/vIr6JuSGRxg

https://youtu.be/vIr6JuSGRxg

Driving seven Segments by Bit-banging TM1640

Seven segment displays take up lot of GPIO pins when they are required to be interfaced with a host

micro. There are several driver ICs like MAX7219, TM1640, 74HC594, etc to overcome this issue.

TM1640 from Titan Micro Electronics does not support standard I2C or SPI communication protocol

unlike most other driver ICs. Thus, to interface it with our host N76E003 micro, we need to apply bit-

banging method just like the LCD examples.

Code

fonts.h

const unsigned char fonts[11] =
{
 0x00, // (32) <space>
 0x3F, // (48) 0
 0x06, // (49) 1
 0x5B, // (50) 2
 0x4F, // (51) 3
 0x66, // (52) 4
 0x6D, // (53) 5
 0x7D, // (54) 6
 0x27, // (55) 7
 0x7F, // (56) 8
 0x6F, // (57) 9
};

TM1640.h

#define TM1640_GPIO_init() do{P03_PushPull_Mode;
P04_PushPull_Mode;}while(0)

#define DIN_pin_HIGH() set_P03
#define DIN_pin_LOW() clr_P03

#define SCLK_pin_HIGH() set_P04
#define SCLK_pin_LOW() clr_P04

#define no_of_segments 16

#define auto_address 0x40
#define fixed_address 0x44
#define normal_mode 0x40
#define test_mode 0x48

#define start_address 0xC0

#define brightness_5_pc 0x88
#define brightness_10_pc 0x89
#define brightness_25_pc 0x8A
#define brightness_60_pc 0x8B
#define brightness_70_pc 0x8C
#define brightness_75_pc 0x8D
#define brightness_80_pc 0x8E
#define brightness_100_pc 0x8F
#define display_off 0x80
#define display_on 0x8F

void TM1640_init(unsigned char brightness_level);
void TM1640_start(void);
void TM1640_stop(void);
void TM1640_write(unsigned char value);
void TM1640_send_command(unsigned char value);
void TM1640_send_data(unsigned char address, unsigned char value);
void TM1640_clear_display(void);

TM1640.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "TM1640.h"

void TM1640_init(unsigned char brightness_level)
{
 TM1640_GPIO_init();

 Timer0_Delay1ms(10);

 DIN_pin_HIGH();
 SCLK_pin_HIGH();

 TM1640_send_command(auto_address);
 TM1640_send_command(brightness_level);
 TM1640_clear_display();
}

void TM1640_start(void)
{
 DIN_pin_HIGH();
 SCLK_pin_HIGH();
 Timer3_Delay10us(1);
 DIN_pin_LOW();
 Timer3_Delay10us(1);
 SCLK_pin_LOW();
}

void TM1640_stop(void)
{
 DIN_pin_LOW();
 SCLK_pin_LOW();
 Timer3_Delay10us(1);
 SCLK_pin_HIGH();
 Timer3_Delay10us(1);
 DIN_pin_HIGH();
}

void TM1640_write(unsigned char value)
{
 unsigned char s = 0x08;

 while(s > 0)
 {
 SCLK_pin_LOW();

 if((value & 0x01) == 0x01)
 {
 DIN_pin_HIGH();
 }
 else
 {
 DIN_pin_LOW();
 }

 SCLK_pin_HIGH();

 value >>= 0x01;
 s--;
 };
}

void TM1640_send_command(unsigned char value)
{
 TM1640_start();
 TM1640_write(value);
 TM1640_stop();
}

void TM1640_send_data(unsigned char address, unsigned char value)

{
 TM1640_send_command(fixed_address);

 TM1640_start();

 TM1640_write((0xC0 | (0x0F & address)));
 TM1640_write(value);

 TM1640_stop();
}

void TM1640_clear_display(void)
{
 unsigned char s = 0x00;

 for(s = 0x00; s < no_of_segments; s++)
 {
 TM1640_send_data(s, 0);
 };
}

main.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "font.h"
#include "TM1640.h"

void display_data(unsigned char segment, signed int value);

void main(void)
{
 unsigned int i = 0;
 unsigned int j = 999;

 TM1640_init(brightness_75_pc);;

 while(1)
 {
 display_data(0, i++);
 display_data(4, j--);
 Timer3_Delay100ms(4);
 };
}

void display_data(unsigned char segment, signed int value)
{
 unsigned char ch = 0;

 if((value > 99) && (value <= 999))
 {
 ch = (value / 100);
 TM1640_send_data((2 + segment), fonts[1 + ch]);

 ch = ((value / 10) % 10);
 TM1640_send_data((1 + segment), fonts[1 + ch]);

 ch = (value % 10);
 TM1640_send_data(segment, fonts[1 + ch]);
 }

 else if((value > 9) && (value <= 99))
 {
 TM1640_send_data((2 + segment), 0);

 ch = (value / 10);
 TM1640_send_data((1 + segment), fonts[1 + ch]);

 ch = (value % 10);
 TM1640_send_data(segment, fonts[1 + ch]);
 }

 else
 {
 TM1640_send_data((2 + segment), 0);

 TM1640_send_data((1 + segment), 0);

 ch = (value % 10);
 TM1640_send_data(segment, fonts[1 + ch]);
 }
}

Schematic

Explanation

Like the LCD libraries demoed previously, TM1640 is driven with GPIO bit-banging. Please read the

datasheet of TM1640 to fully understand how the codes are implemented. It uses two pins just like

I2C but don’t be fooled as it doesn’t support I2C protocol. It uses a protocol of its own. To change pin

configuration, just change the following lines of code:

#define TM1640_GPIO_init() do{P03_PushPull_Mode;
P04_PushPull_Mode;}while(0)

#define DIN_pin_HIGH() set_P03
#define DIN_pin_LOW() clr_P03

#define SCLK_pin_HIGH() set_P04
#define SCLK_pin_LOW() clr_P04

Demo

Demo video: https://youtu.be/2ufeAQkt5Jk

https://cdn.solarbotics.com/products/datasheets/tm1640.pdf
https://youtu.be/2ufeAQkt5Jk

External Interrupt (EXTI)

External interrupt is a key GPIO feature in input mode. It momentarily interrupts regular program flow

just like other interrupts and does some tasks before resuming interrupted task. In traditional 8051s,

there are two external interrupts with dedicated and separate interrupt vector addresses. The same

applies to N76E003. Highlighted below in the N76E003's interrupt vector table are the interrupt vector

addresses/numbers of these two external interrupts:

Code

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"

void setup(void);

void EXT_INT0(void)
interrupt 0
{
 set_P00;
}

void EXT_INT1(void)
interrupt 2
{
 set_P01;
}

void main(void)
{
 setup();

 while(1)
 {
 Timer0_Delay1ms(1000);
 clr_P00;
 clr_P01;
 };
}

void setup(void)
{
 P00_PushPull_Mode;
 P01_PushPull_Mode;
 P17_Input_Mode;
 P30_Input_Mode;
 set_P1S_7;
 set_P3S_0;
 set_IT0;
 set_IT1;
 set_EX0;
 set_EX1;
 set_EA;
}

Schematic

Explanation

The setup for this demo is simple. There are two LEDs and two buttons connected with a N76E003

chip as per schematic. The buttons are connected with external interrupt pins. Obviously, these pins

are declared as input pins. Additionally, internal input Schmitt triggers of these pins are used to ensure

noise cancellation. Both interrupts are enabled along with their respective interrupt hardware. Finally,

global interrupt is set. Optionally interrupt priority can be applied.

P17_Input_Mode;
P30_Input_Mode;

set_P1S_7;
set_P3S_0;

set_IT0;
set_IT1;

set_EX0;
set_EX1;
set_EA;

Since we enabled two interrupts with different interrupt vectors, there will be two interrupt

subroutine functions. Each of these functions will briefly turn on LEDs assigned to them. The LEDs are

turned off in the main function. Thus, the LEDs mark which interrupt occurred.

void EXT_INT0(void)
interrupt 0
{
 set_P00;
}

void EXT_INT1(void)
interrupt 2
{
 set_P01;
}

Demo

Demo video: https://youtu.be/fFpBpoNMNyI

https://youtu.be/fFpBpoNMNyI

Pin Interrupt – Interfacing Rotary Encoder

Apart from dedicated external interrupts, N76E003 is equipped with pin interrupt facility - a feature

that can be found in almost every microcontroller of modern times. With pin interrupt, any GPIO can

be made to behave like external interrupt. However, unlike external interrupts, a single hardware

interrupt channel and therefore one vector address is used for mapping a maximum of eight different

GPIO pins. These pins need not to be on the same GPIO port. When interrupt occurs, we need to assert

from which pin it originated. This feature becomes very useful when interfacing keypads and buttons.

Code

#include "N76E003_IAR.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "soft_delay.h"
#include "LCD_2_Wire.h"

signed char encoder_value = 0;

void setup(void);

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned int value);

#pragma vector = 0x3B
__interrupt void PIN_INT(void)
{
 clr_EA;

 if(PIF == 0x01)
 {
 if((P1 & 0x03) == 0x02)
 {
 encoder_value++;
 }

 if(encoder_value > 99)
 {
 encoder_value = 0;
 }
 }

 if(PIF == 0x02)
 {
 if((P1 & 0x03) == 0x01)
 {
 encoder_value--;
 }

 if(encoder_value < 0)
 {
 encoder_value = 99;
 }
 }

 PIF = 0x00;

 P15 = ~P15;
}

void main(void)
{
 setup();

 while(1)
 {
 set_EA;
 lcd_print(14, 0, encoder_value);
 delay_ms(40);
 }
}

void setup(void)
{
 P10_Input_Mode;

 P11_Input_Mode;

 P15_PushPull_Mode;

 Enable_BIT0_LowLevel_Trig;
 Enable_BIT1_LowLevel_Trig;

 Enable_INT_Port1;

 set_EPI;

 LCD_init();
 LCD_clear_home();
 LCD_goto(0, 0);
 LCD_putstr("ENC Count:");
}

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 10) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

Pin interrupt is not same as dedicated external interrupt but still it is very useful in a number of cases.

In this demo, two pin interrupts are used to decode a rotary encoder. Probably this is the simplest

method of decoding a rotary encoder.

Setting up pin interrupt is very easy. We need to set the pin interrupt pins are inputs. We can optionally

use the internal Schmitt triggers. Then we decide the edge to detect and which ports to check for pin

interrupt. Finally, we set the pin interrupt hardware.

P10_Input_Mode;

P11_Input_Mode;

Enable_BIT0_LowLevel_Trig;

Enable_BIT1_LowLevel_Trig;

Enable_INT_Port1;

set_EPI;

Inside the pin interrupt function, we need to check which pin shot the interrupt by checking respective

flags. Encoder count is incremented/decremented based on which flag got shot first and the logic state

of the other pin. Since here a rotary encoder is interfaced with pin interrupt facility of N76E003, we

have to ensure that the micro doesn’t detect any further or false interrupts while already processing

one interrupt condition. This is why the global interrupt is disabled every time the code enters the pin

interrupt function. This is restarted in the main. Similarly, to ensure proper working we have clear the

interrupt flags before exiting the function. P15 is toggled with interrupt to visually indicate the rotation

of the encoder.

#pragma vector = 0x3B
__interrupt void PIN_INT(void)
{
 clr_EA;

 if(PIF == 0x01)
 {
 if((P1 & 0x03) == 0x02)
 {
 encoder_value++;
 }

 if(encoder_value > 99)
 {
 encoder_value = 0;
 }
 }

 if(PIF == 0x02)
 {
 if((P1 & 0x03) == 0x01)
 {
 encoder_value--;
 }

 if(encoder_value < 0)
 {
 encoder_value = 99;
 }

 }

 PIF = 0x00;

 P15 = ~P15;
}

The main code just shows the encoder count. When the encoder is rotated in one direction, the count

increases while rotating it in the opposite direction causes the encoder count to decrease.

Demo

Demo video: https://youtu.be/nPEzTYj70ys

https://youtu.be/nPEzTYj70ys

Clock System

The clock system of N76E003 is very straight forward and very flexible. To begin with, there are three

clock sources, a clock selector and a common clock divider block apart from other blocks. Shown below

is the block diagram of N76E003’s clock system:

The three sources are as follows:

Source

Max Clock Speed

Reliability/Accuracy

Purpose

External Clock (ECLK) 16 MHz – External
clock signal generator
like crystal oscillator
modules/electronic
circuitry

High - (dependent on
oscillator accuracy and
type)

Main system clock
when high timing
precision is needed

High Speed Internal
RC Oscillator (HIRC)

16 MHz – Internal high
frequency RC
oscillator with 1%
tolerance

Reasonable - (±1% for
most typical
temperature ranges
and ±2% for extreme
temperatures)

General purpose main
clock with 1%
tolerance or backup
clock source when
external clock is
present

Low Speed Internal RC
Oscillator (LIRC)

10 kHz - Internal low
frequency RC
oscillator with 10%
tolerance

Low - (±10% for most
typical temperature
ranges and ±35% for
extreme
temperatures)

Usually used for low
power idle modes
when high timing
precision is not
required, not
recommend for RTC
and can’t be disabled

Once a given clock source is set, it becomes the clock for all systems. The only exception here is the

watchdog timer and the self-wake-up timer which are only run by the LIRC.

Code

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"

#define HIRC 0
#define LIRC 1
#define ECLK 2

void set_clock_source(unsigned char clock_source);
void disable_clock_source(unsigned char clock_source);
void set_clock_division_factor(unsigned char value);

void main(void)
{
 signed char i = 30;

 P11_PushPull_Mode;
 P15_PushPull_Mode;

 set_clock_division_factor(0);
 set_clock_source(HIRC);

 set_CLOEN;

 while(i > 0)
 {
 clr_P15;
 Timer0_Delay1ms(100);
 set_P15;
 Timer0_Delay1ms(100);
 i--;
 }

 set_clock_source(ECLK);
 disable_clock_source(HIRC);

 i = 30;

 while(i > 0)
 {
 clr_P15;
 Timer0_Delay1ms(100);
 set_P15;
 Timer0_Delay1ms(100);
 i--;
 }

 set_clock_source(LIRC);
 disable_clock_source(HIRC);

 while(1)
 {
 clr_P15;
 Timer0_Delay1ms(1);
 set_P15;
 Timer0_Delay1ms(1);
 };
}

void set_clock_source(unsigned char clock_source)
{
 switch(clock_source)
 {
 case LIRC:
 {
 set_OSC1;
 clr_OSC0;

 break;
 }

 case ECLK:
 {
 set_EXTEN1;
 set_EXTEN0;

 while((CKSWT & SET_BIT3) == 0);

 clr_OSC1;
 set_OSC0;

 break;
 }

 default:
 {
 set_HIRCEN;

 while((CKSWT & SET_BIT5) == 0);

 clr_OSC1;
 clr_OSC0;

 break;
 }
 }

 while((CKEN & SET_BIT0) == 1);
}

void disable_clock_source(unsigned char clock_source)
{
 switch(clock_source)

 {
 case HIRC:
 {
 clr_HIRCEN;
 break;
 }

 default:
 {
 clr_EXTEN1;
 clr_EXTEN0;
 break;
 }
 }
}

void set_clock_division_factor(unsigned char value)
{
 CKDIV = value;
}

Schematic

Explanation

The very first thing to note is the absence of two OSC pins unlike other micros and yet a crystal

resonator is connected with P30 and P17. This configuration is not correct. There is only OSCIN pin.

This is because N76E003 can only be driven with active clock sources like crystal modules, external

electronic circuitry, etc. The HIRC clock source is accurate enough for most purposes and there is

literally no need for external clock. I have done most of the experiments with HIRC and I’m satisfied

with it.

Many people don’t understand the difference between a crystal oscillator module and a crystal

resonator. Both are based on quartz crystals but the oscillator one has internal electronics to generate

clock pulses precisely while the resonator just contains the quartz crystal. Crystal modules are accurate

compared to resonators because the internal electronics in them take care of the effects of

temperature. Resonators are therefore called passive clock crystals while the clock modules are

termed active clocks.

Here to test all three clock sources, I used two things – first the onboard LED and second the clock

output pin. Different clock sources are enabled briefly one after another and the onboard LED is

blinked. The blinking rate of the LED is an indirect indicator of clock speed. The clock output too is

monitored with an oscilloscope/signal analyser for clock speeds. HIRC is turned on first, then ECLK and

finally LIRC. By default, both HIRC and LIRC are turned on during power on. When switching between

clock sources, we should poll if the new clock source is stable prior to using it and disable the one that

we don’t need.

I have coded the following three for setting up the clock system. Their names suggest their purposes.

void set_clock_source(unsigned char clock_source);
void disable_clock_source(unsigned char clock_source);
void set_clock_division_factor(unsigned char value);

These three functions will be all that you’ll ever need to configure the clock system without any hassle.

The first two are most important as they select clock source and disabled the one that is not need. If

you are still confused about setting the system clock then you can avoid the clock division function

and straight use the following function:

void set_clock_frequency(unsigned long F_osc, unsigned long F_sys)
{
 F_osc = (F_osc / (2 * F_sys));

 if((F_osc >= 0x00) && (F_osc <= 0xFF))
 {
 CKDIV = ((unsigned char)F_osc);
 }
}

This function takes two parameters – the frequency of the clock source and the frequency of the

system after clock division.

Demo

Demo video: https://youtu.be/C_01oeoqAVE

https://youtu.be/C_01oeoqAVE

12-Bit ADC – LM35 Thermometer

Most 8051s don’t have any embedded ADC but N76E003 comes with a 12-bit SAR ADC. This is also

one area where N76E003 differs a lot from STM8S003. The 12-bit resolution is the factor. N76E003

has eight single-ended ADC inputs along with a bandgap voltage generator and a built-in comparator.

The ADC can be triggered internally with software or by external hardware pins/PWM. Everything is

same as the ADCs of other microcontrollers and there’s not much difference.

Code

#include "N76E003_IAR.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_3_Wire.h"

#define scalar 0.12412

void setup(void);
unsigned int ADC_read(void);
void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int
value);
void lcd_print_f(unsigned char x_pos, unsigned char y_pos, unsigned int
value);

void main(void)
{
 unsigned int temp = 0;
 unsigned int adc_count = 0;

 setup();

 while(1)
 {
 adc_count = ADC_read();
 temp = ((unsigned int)(((float)adc_count) / scalar));
 lcd_print_i(12, 0, adc_count);
 lcd_print_f(11, 1, temp);
 Timer0_Delay1ms(600);
 }
}

void setup(void)
{
 LCD_init();
 LCD_clear_home();
 LCD_goto(0, 0);
 LCD_putstr("ADC Count:");
 LCD_goto(0, 1);
 LCD_putstr("Tmp/deg C:");

 Enable_ADC_AIN0;
}

unsigned int ADC_read(void)
{
 register unsigned int value = 0x0000;

 clr_ADCF;
 set_ADCS;
 while(ADCF == 0);

 value = ADCRH;
 value <<= 4;
 value |= ADCRL;

 return value;
}

void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 1000) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 1000) / 100) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 3), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

void lcd_print_f(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 1000) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 1000) / 100) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar('.');
 LCD_goto((x_pos + 3), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 4), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

In this demo, one ADC channel (AIN0) is used to read a LM35 temperature sensor. Polling method is

used to read the ADC.

Enabling the ADC is simply done by coding the following line:

Enable_ADC_AIN0;

In the background of this, ADC channel selection and other parameters are set. If you want more

control over the ADC then you must set the ADC registers on your own. Most of the times that can be

avoided.

Reading the ADC needs some attention because the ADC data registers are not aligned like other

registers and we just need 12-bits, not 8/16-bits.

Notice that the we must extract ADC from ADCCRH and from the low four bits of ADCCRL. To handle

this issue the follow function is devised:

unsigned int ADC_read(void)

{

 register unsigned int value = 0x0000;

 clr_ADCF;

 set_ADCS;

 while(ADCF == 0);

 value = ADCRH;

 value <<= 4;

 value |= ADCRL;

 return value;

}

When this function is called, the ADC conversion completion flag is cleared and the ADC is software-

triggered. The conversion completion flag is polled. When this flag status is changed, the ADC data

registers are read. Finally, the value is returned.

LM35 gives 10mV output for each degree of temperature. Therefore, for 26°C the sensor is supposed

to give 260mV output. At 3.3V the ADC count will 4095 while at 0V the ADC count will be 0 count.

Thus, 0.806mV equals one count and so 260mV should give:

260

0.806
 = 322 counts.

In the display, we have to show 26.00°C i.e. 2600 considering no decimal point and fully integer value.

Thus, to transform 322 to 2600, we have to divide the result with a scalar (0.12412). The main code

just does that after reading the ADC. The ADC count and temperature are then both shown in the LCD.

Demo

Demo video: https://youtu.be/j-8qGBzRxAQ

https://youtu.be/j-8qGBzRxAQ

ADC Interrupt – LDR-based Light Sensor

Like any other interrupts, ADC interrupt is a very interrupt. In the last example we saw polling-based

ADC readout. In this segment, we will see how to use interrupt-based method to extract ADC data.

The concept of ADC interrupt is simply to notify that an ADC data has been made ready for reading

once triggered.

Code

#include "N76E003_IAR.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "soft_delay.h"
#include "LCD_2_Wire.h"

//LDR Definitions//

#define LDR_constant 100000.0
#define R_fixed 10000.0
#define VDD 4095

unsigned int adc_value = 0x0000;

void setup(void);
unsigned int ADC_read(void);
void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int
value);
unsigned int measure_light_intensity(void);

#pragma vector = 0x5B
__interrupt void ADC_ISR(void)
{
 adc_value = ADC_read();
 clr_ADCF;
}

void main(void)
{
 unsigned int lux = 0;

 setup();

 while(1)
 {
 set_ADCS;
 lux = measure_light_intensity();
 lcd_print_i(12, 0, adc_value);
 lcd_print_i(12, 1, lux);
 delay_ms(400);
 }
}

void setup(void)
{
 LCD_init();
 LCD_clear_home();
 LCD_goto(0, 0);
 LCD_putstr("ADC Count:");
 LCD_goto(0, 1);
 LCD_putstr("Lux Value:");

 Enable_ADC_AIN4;
 set_EADC;
 set_EA;
}

unsigned int ADC_read(void)
{
 register unsigned int value = 0x0000;

 value = ADCRH;
 value <<= 4;
 value |= ADCRL;

 return value;
}

void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 1000) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 1000) / 100) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 3), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

unsigned int measure_light_intensity(void)
{
 float lux = 0;

 lux = adc_value;

 lux = (LDR_constant * ((VDD / (R_fixed * lux))) - 0.1);

 if((lux >= 0) && (lux <= 9999))
 {
 return ((unsigned int)lux);
 }
 else
 {
 return 0;
 }
}

Schematic

Explanation

Setting the ADC in interrupt is not much different from the previous example except for the interrupt

parts.

Enable_ADC_AIN4;
set_EADC;
set_EA;

We have to enable both the ADC and global interrupts.

The reading process is also same:

unsigned int ADC_read(void)
{
 register unsigned int value = 0x0000;

 value = ADCRH;
 value <<= 4;
 value |= ADCRL;

 return value;
}

The ADC is triggered in the main with the following line of code since we are using software-based

triggering:

set_ADCS;

Now instead of reading the ADC in the main by polling, the ADC is read in the interrupt.

#pragma vector = 0x5B
__interrupt void ADC_ISR(void)
{
 adc_value = ADC_read();
 clr_ADCF;
}

When ADC interrupt occurs, we must clear ADC interrupt flag and read the ADC data registers. In this

way, the main code is made free from polling and free for other tasks.

The demo here is a rudimentary LDR-based light intensity meter. Light falling on the LDR changes its

resistance. Using voltage divider method, we can back calculate the resistance of the LDR and use this

info to measure light intensity.

Demo

Demo video: https://youtu.be/3TcjGDZ4koE

https://youtu.be/3TcjGDZ4koE

ADC Comparator

Many micros are equipped with on-chip analogue comparator. N76E003 has an embedded ADC

comparator. The main feature of this comparator is the range it offers. Unlike comparators of other

micros in which only a few selectable set points can set, the ADC comparator of N76E003 can be set

in any range from 0 count to the max ADC count of 4095. This allows us to easily implement it for

many applications like low battery alarm, SMPSs, over voltage sense, overload detection, etc. It must

be noted however, it is not a true comparator because a true comparator has nothing to do with ADC.

The comparator block is situated at the output of the ADC and so it is just a single block like the ADC

but all eight channels share it. Thus, when it is needed to compare multiple channels, it should be

reset and reconfigured.

Code

#include "N76E003_IAR.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "soft_delay.h"
#include "LCD_2_Wire.h"

unsigned int adc_value = 0x0000;

void setup(void);
unsigned int ADC_read(void);
void set_ADC_comparator_value(unsigned int value);
void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int
value);

#pragma vector = 0x5B
__interrupt void ADC_ISR(void)
{
 adc_value = ADC_read();
 clr_ADCF;
}

void main(void)
{
 setup();

 while(1)
 {
 set_ADCS;
 lcd_print_i(12, 0, adc_value);

 LCD_goto(12, 1);

 if((ADCCON2 & 0x10) != 0x00)
 {
 LCD_putstr("HIGH");
 set_P15;
 }
 else
 {
 LCD_putstr(" LOW");
 clr_P15;
 }

 delay_ms(400);
 }
}

void setup(void)
{
 P15_PushPull_Mode;

 LCD_init();
 LCD_clear_home();
 LCD_goto(0, 0);
 LCD_putstr("ADC Count:");
 LCD_goto(0, 1);
 LCD_putstr("Cmp State:");

 Enable_ADC_BandGap;
 Enable_ADC_AIN4;

 set_ADC_comparator_value(1023);
 set_ADCMPEN;

 set_EADC;
 set_EA;
}

unsigned int ADC_read(void)
{
 register unsigned int value = 0x0000;

 value = ADCRH;
 value <<= 4;
 value |= ADCRL;

 return value;
}

void set_ADC_comparator_value(unsigned int value)
{
 ADCMPH = ((value & 0x0FF0) >> 4);
 ADCMPL = (value & 0x000F);
}

void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 1000) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 1000) / 100) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 3), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

To configure the ADC comparator block, we just need to specify two things – the reference value with

which the comparison should to be done and the polarity of comparison. After setting these up, we

have to enable the comparator block. These are done as follows:

set_ADC_comparator_value(1023);
set_ADCMPEN;

Note in the code snippet above, I didn’t code anything regarding polarity because by default the

polarity is set as such that the comparator’s output will change state when the input voltage is greater

than or equal to the set ADC count level of 1023.

Just like ADC reading, we have to take care of the bit positions for the comparator set point. It is coded

as follows.

void set_ADC_comparator_value(unsigned int value)
{
 ADCMPH = ((value & 0x0FF0) >> 4);
 ADCMPL = (value & 0x000F);
}

In this demo, I also used the bandgap voltage as reference source:

Enable_ADC_BandGap;

The rest of the code is similar to the ADC interrupt code.

Demo

Demo video: https://youtu.be/Nn--zrezoqc

https://youtu.be/Nn--zrezoqc

Data Flash – Using APROM as EEPROM

In most standard 8051s, there is no dedicated memory space as EEPROM. This is unlike other

microcontrollers of modern era. EEPROM memory is needed for the storage of critical data that need

to be retained even in power down state. In N76E003, there are two types of ROM memory. EEPROM-

like storage can be achieved by using APROM (Application ROM). APROM is the actual flash memory

where store our application codes. User Code Loader ROM or LDROM of N76E003 microcontroller, is

another ROM where we can keep a bootloader and configuration codes. Sizes of these ROMs can be

varied according to configuration bits.

Code

Flash.h

#define CID_READ 0x0B
#define DID_READ 0x0C

#define PAGE_ERASE_AP 0x22
#define BYTE_READ_AP 0x00
#define BYTE_PROGRAM_AP 0x21
#define PAGE_SIZE 128u

#define ERASE_FAIL 0x70
#define PROGRAM_FAIL 0x71
#define IAPFF_FAIL 0x72
#define IAP_PASS 0x00

void enable_IAP_mode(void);
void disable_IAP_mode(void);
void trigger_IAP(void);

unsigned char write_data_to_one_page(unsigned int u16_addr, const unsigned
char *pDat, unsigned char num);
void write_data_flash(unsigned int u16_addr, unsigned char *pDat, unsigned int
num);
void read_data_flash(unsigned int u16_addr, unsigned char *pDat, unsigned int
num);

Flash.c

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "Flash.h"

static unsigned char EA_Save_bit;

void enable_IAP_mode(void)
{
 EA_Save_bit = EA;
 clr_EA;
 TA = 0xAA;
 TA = 0x55;
 CHPCON |= 0x01 ;
 TA = 0xAA;
 TA = 0x55;
 IAPUEN |= 0x01;
 EA = EA_Save_bit;
}

void disable_IAP_mode(void)
{
 EA_Save_bit = EA;
 clr_EA;
 TA = 0xAA;
 TA = 0x55;
 IAPUEN &= ~0x01;
 TA = 0xAA;
 TA = 0x55;
 CHPCON &=~ 0x01;
 EA = EA_Save_bit;
}

void trigger_IAP(void)
{
 EA_Save_bit = EA;
 clr_EA;
 TA = 0xAA;
 TA = 0x55;
 IAPTRG |= 0x01;

 EA = EA_Save_bit;
}

unsigned char write_data_to_one_page(unsigned int u16_addr, const unsigned
char *pDat, unsigned char num)
{
 unsigned char i = 0;
 unsigned char offset = 0;
 unsigned char __code *pCode;
 unsigned char __xdata *xd_tmp;

 enable_IAP_mode();
 offset = (u16_addr & 0x007F);
 i = (PAGE_SIZE - offset);

 if(num > i)
 {
 num = i;
 }

 pCode = (unsigned char __code *)u16_addr;

 for(i = 0; i < num; i++)
 {
 if(pCode[i] != 0xFF)
 {
 break;
 }
 }

 if(i == num)
 {
 IAPCN = BYTE_PROGRAM_AP;
 IAPAL = u16_addr;
 IAPAH = (u16_addr >> 8);

 for(i = 0; i < num; i++)
 {
 IAPFD = pDat[i];
 trigger_IAP();
 IAPAL++;
 }

 for(i = 0; i < num; i++)
 {
 if(pCode[i] != pDat[i])
 {
 break;
 }
 }

 if(i != num)
 {
 goto WriteDataToPage20;
 }

 }

 else
 {
 WriteDataToPage20:
 pCode = (unsigned char __code *)(u16_addr & 0xFF80);
 for(i = 0; i < 128; i++)
 {
 xd_tmp[i] = pCode[i];
 }

 for(i = 0; i < num; i++)
 {
 xd_tmp[offset + i] = pDat[i];
 }

 do
 {
 IAPAL = (u16_addr & 0xFF80);
 IAPAH = (u16_addr >> 8);
 IAPCN = PAGE_ERASE_AP;
 IAPFD = 0xFF;
 trigger_IAP();
 IAPCN =BYTE_PROGRAM_AP;

 for(i = 0; i < 128; i++)
 {
 IAPFD = xd_tmp[i];
 trigger_IAP();
 IAPAL++;
 }

 for(i = 0; i < 128; i++)
 {
 if(pCode[i] != xd_tmp[i])
 {
 break;
 }
 }
 }while(i != 128);

 }

 disable_IAP_mode();

 return num;
}

void write_data_flash(unsigned int u16_addr, unsigned char *pDat,unsigned int
num)
{
 unsigned int CPageAddr = 0;
 unsigned int EPageAddr = 0;
 unsigned int cnt = 0;

 CPageAddr = (u16_addr >> 7);
 EPageAddr = ((u16_addr + num) >> 7);

 while(CPageAddr != EPageAddr)
 {
 cnt = write_data_to_one_page(u16_addr, pDat, 128);
 u16_addr += cnt;
 pDat += cnt;
 num -= cnt;
 CPageAddr = (u16_addr >> 7);
 }

 if(num)
 {
 write_data_to_one_page(u16_addr, pDat, num);
 }
}

void read_data_flash(unsigned int u16_addr, unsigned char *pDat, unsigned int
num)
{
 unsigned int i = 0;

 for(i = 0; i < num; i++)
 {
 pDat[i] = *(unsigned char __code *)(u16_addr+i);
 }
}

main.c

#include "N76E003_IAR.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "LCD_2_Wire.h"
#include "Flash.h"

#define BASE_ADDRESS 3700

void lcd_print_c(unsigned char x_pos, unsigned char y_pos, unsigned char
value);
void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int
value);

void main (void)
{
 unsigned char s = 0;
 unsigned char val[1] = {0};
 unsigned char ret_val[1] = {0};

 P15_PushPull_Mode;

 LCD_init();
 LCD_clear_home();

 clr_P15;
 LCD_goto(0, 0);
 LCD_putstr("R Addr:");
 LCD_goto(0, 1);
 LCD_putstr("R Data:");

 for(s = 0; s <= 9; s++)
 {
 read_data_flash((s + BASE_ADDRESS), ret_val, 1);
 delay_ms(10);
 lcd_print_i(11, 0, (s + BASE_ADDRESS));
 lcd_print_c(13, 1, ret_val[0]);
 delay_ms(600);
 }

 delay_ms(2000);

 set_P15;
 LCD_goto(0, 0);
 LCD_putstr("W Addr:");
 LCD_goto(0, 1);
 LCD_putstr("W Data:");

 for(s = 0; s <= 9; s++)
 {
 val[0] = s;
 write_data_flash((s + BASE_ADDRESS), val, 1);
 delay_ms(10);
 lcd_print_i(11, 0, (s + BASE_ADDRESS));
 lcd_print_c(13, 1, val[0]);
 delay_ms(600);
 }

 while(1)
 {
 };
}

void lcd_print_c(unsigned char x_pos, unsigned char y_pos, unsigned char
value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 100) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 10) / 10) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

void lcd_print_i(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 10000) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 10000) / 1000) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar(((value % 1000) / 100) + 0x30);
 LCD_goto((x_pos + 3), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 4), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

To write and read data from flash we can use the following functions:

void write_data_flash(unsigned int u16_addr, unsigned char *pDat, unsigned int num);
void read_data_flash(unsigned int u16_addr, unsigned char *pDat, unsigned int num);

Both of these functions are pointer-based functions. The first parameter of these function is the

physical location of data, the second argument is the data pointer itself and the last argument is the

number of bytes to read/write. Try to use the upper addresses of the flash where application code

usually doesn’t reside. Reading the flash doesn’t require any involvement of IAP while writing does

require IAP. The functions are self-explanatory and can be used readily without any changes since they

are provided in the BSP examples.

In the demo, ten data bytes are saved in ten separate locations starting from location 3700 to 3709.

Prior to that these locations are read. On first start up, these locations have no saved data and so they

show up garbage values (205/255 usually). When a valid user data is saved, the location is updated

with it. When reset or powered down, the newly written data bytes are retained and reread when

powered up again.

Try not to frequently write on the flash since flash memories wear on frequent writes. Use a RAM-

based buffer and try to write one page of flash when the buffer is full. In this way, flash memory wear-

and-tear is slightly reduced.

Be careful about saving locations. Don’t use locations that hold application code. Try to use

unoccupied empty flash locations or upper flash addresses. Use the NuMicro ISP Programming Tool

for finding empty locations.

Demo

Demo video: https://youtu.be/b2iH-DCTfqU

https://youtu.be/b2iH-DCTfqU

Overview of N76E003 Timers

Since N76E003 is based on 8051 architecture, many of its hardware features will have similarities with

a standard 8051 microcontroller. The timers of N76E003 have such similarities but keep in mind that

similarities don’t mean same. Strictly speaking in N76E003, there six timers and these are:

• Timer 0 and Timer 1

These are both 16-bit general purpose timers with four modes of operation. With these

modes we can allow the timers to operate as general purpose 8-bit auto-reloading timers,

13-bit and 16-bit timers. Most commonly the 16-bit timer mode (Mode 1) is used as it is the

simplest mode available. Additionally, we can take outputs of these timers. Unlike typical

8051s, we can use chose from Fsys, fixed and prescaled Fsys (Fsys / 12) or external input as

timer clock sources.

• Timer 2

Timer 2 is different from Timers 0 and 1 in many aspects. Mainly it is used for waveform

captures. It can also be used in compare mode to generate timed events or compare-match-

based PWM. It has auto-reloading feature unlike Timers 0 and 1.

• Timer 3

Timer 3 is an auto-reloading 16-bit timer with no output and Fsys as clock source. Like Timer

1, Timer 3 can be used for serial communication hardware (UART).

• Self-Wake Up Timer (WKT)

The self-wake-up timer or simply wake-up timer is a special event timer that is not available

in standard 8051s. The purpose of this timer is to wake-up or restore the normal working of a

N76E003 chip from low power modes after a certain period of time. It can also be used to

trigger timed events or trigger other hardware.

• Watchdog Timer

The watchdog timer of N76E003 can be used either as a 6-bit general purpose timer or as a

standard watchdog timer. Most commonly it is not used as a general-purpose timer because

that is not what it is meant to be. In watchdog mode, it helps in recovering a stuck N76E003

micro by resetting it.

While using BSPs be careful about timer-based delay routines and UART routines. These built-in

routines reset and reconfigure timers according to their purposes. Make sure that there is no

conflicting issue when using them. To avoid such conflict, either use software delay routines or one

dedicate timer for a particular job. For instance, use Timer 1 for delays and Timer 3 for UART. You have

to know what you are doing and with which hardware.

Timer 0 – Time base Generation

Time-base generation is one of the most basic function of a timer. By using time-bases, we can avoid

software delays and unwanted loops when we need to wait or check something after a fixed amount

of time. BSP-based delay functions are based on this principle.

Here in this section, we will see how to create a time-base to toggle P15 LED.

Code

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"

#define HIRC 0
#define LIRC 1
#define ECLK 2

void setup(void);
void set_clock_source(unsigned char clock_source);
void disable_clock_source(unsigned char clock_source);
void set_clock_division_factor(unsigned char value);
void set_Timer_0(unsigned int value);
unsigned int get_Timer_0(void);

void main(void)
{
 setup();

 while(1)
 {
 if(get_Timer_0() < 32767)
 {
 P15 = 1;

 }
 else
 {
 P15 = 0;
 }
 };
}

void setup(void)
{
 disable_clock_source(ECLK);
 set_clock_source(HIRC);
 set_clock_division_factor(80);

 P15_PushPull_Mode;

 set_T0M;
 TIMER0_MODE1_ENABLE;
 set_Timer_0(0);
 set_TR0;
}

void set_clock_source(unsigned char clock_source)
{
switch(clock_source)
{
 case LIRC:
 {
 set_OSC1;
 clr_OSC0;

 break;
 }

 case ECLK:
 {
 set_EXTEN1;
 set_EXTEN0;

 while((CKSWT & SET_BIT3) == 0);

 clr_OSC1;
 set_OSC0;

 break;
 }

 default:
 {
 set_HIRCEN;

 while((CKSWT & SET_BIT5) == 0);

 clr_OSC1;

 clr_OSC0;

 break;
 }
 }

 while((CKEN & SET_BIT0) == 1);
}

void disable_clock_source(unsigned char clock_source)
{
 switch(clock_source)
 {
 case HIRC:
 {
 clr_HIRCEN;
 break;
 }

 default:
 {
 clr_EXTEN1;
 clr_EXTEN0;
 break;
 }
 }
}

void set_clock_division_factor(unsigned char value)
{
 CKDIV = value;
}

void set_Timer_0(unsigned int value)
{
 TH0 = ((value && 0xFF00) >> 8);
 TL0 = (value & 0x00FF);
}

unsigned int get_Timer_0(void)
{
 unsigned int value = 0x0000;

 value = TH0;
 value <<= 8;
 value |= TL0;

 return value;
}

Schematic

Explanation

For demoing time-base generation, we don’t need any additional hardware since we will just be

blinking P15 LED without software-based delays.

Before I start explaining the code example, I would like to discuss how Timer 0 and 1 works in Mode

1. In Mode 1, these timers behave like up-counting 16-bit timers. This means they can count (contents

of TL and TH registers) from 0 to 65535 with every pulse/clock tick. There is no down-counting feature

in these timers.

The source of these pulse/clock ticks can be from system clock, prescaled system clock or from

external inputs. When external inputs are used, these timers can be used like counters. Unlike

conventional 8051, there are options to take output from timers. The outputs change state with

overflows/rollovers, i.e. when the timer counts resets from 65535 to 0.

In the setup function, we do a couple of things. First, we setup the system clock source to 100kHz with

HIRC as clock source. P15 is set as an output. Timer 0 is used and so there a 0 in timer setups. Timer 0

is clocked with system clock, i.e. 100kHz and so one tick is:

Timer Tick =
1

𝐹𝑠𝑦𝑠
 =

1

100𝑘𝐻𝑧
 = 10μs

In Mode 1, the timer will reset/overflow after:

65536 × 10μs ≈ 655ms

provided that the initial count of the timer was set to 0. This is what we are doing in the set up. After

setting the timer’s count and the mode of operation, the timer is started.

disable_clock_source(ECLK);
set_clock_source(HIRC);
set_clock_division_factor(80);

P15_PushPull_Mode;

set_T0M;
TIMER0_MODE1_ENABLE;
set_Timer_0(0);
set_TR0;

Functions set_Timer_0 and get_Timer_0 writes Timer 0’s count and reads Timer 0’s count

respectively.

void set_Timer_0(unsigned int value);
unsigned int get_Timer_0(void);

It is needed to toggle the state of the P15 LED and yeah, that is done at every half count of the timer,

i.e. at every 327ms. In the main, the timer’s count is checked using get_Timer_0 function. When the

timer’s count is less than 32767 counts, P15 LED is held high. P15 LED is set low when the timer’s count

is greater than this 32767. In this way the toggling effect is achieved without software delays.

However, the timer’s count is frequently polled.

if(get_Timer_0() < 32767)
{
 P15 = 1;
}
else
{
 P15 = 0;
}

Demo

Demo video: https://youtu.be/IJvFhdL24B8

https://youtu.be/IJvFhdL24B8

Timer 1 – Stopwatch

We have already seen the operation of general-purpose timers in Mode 1. In this segment, we will

how to use these timers in Mode 0. Everything is same between Mode 0 and 1. However, the timer

counts or resolutions vary in these modes. Mode 0 makes general purpose timers behave as 13-bit

timer/counters.

Check the block diagram shown above and compare with the one previously shown. Note the greyed-

out part in this diagram. The upper bits of TL registers are not used in this mode. Between Mode 0 and

1, personally Mode 1 is easier than Mode 0.

Here Timer 1 in Mode 0 is used to create a digital stopwatch.

Code

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_3_Wire.h"

#define HIRC 0
#define LIRC 1
#define ECLK 2

unsigned char toggle = 0;
unsigned int ms = 0;

unsigned char sec = 0;
unsigned char min = 0;
unsigned char hrs = 0;

void setup(void);

void set_clock_source(unsigned char clock_source);
void disable_clock_source(unsigned char clock_source);
void set_clock_division_factor(unsigned char value);
void set_Timer_1_for_Mode_0(unsigned int value);
unsigned int get_Timer_1_for_Mode_0(void);
void print_C(unsigned char x_pos, unsigned char y_pos, unsigned char value);
void print_I(unsigned char x_pos, unsigned char y_pos, unsigned int value);

#pragma vector = 0x1B
__interrupt void Timer1_ISR (void)
{
 set_Timer_1_for_Mode_0(0x1D64);

 ms++;

 if(ms == 499)
 {
 toggle = ~toggle;
 }

 if(ms > 999)
 {
 ms = 0;
 sec++;

 if(sec > 59)
 {
 sec = 0;
 min++;

 if(min > 59)
 {
 min = 0;
 hrs++;

 if(hrs > 23)
 {
 hrs = 0;
 }
 }
 }
 }
}

void main(void)
{
 static char txt[] = {"Nu Stopwatch"};

 setup();

 LCD_goto(2, 0);
 LCD_putstr(txt);

 while(1)

 {
 if(P05 == 1)
 {
 set_ET1;
 set_EA;
 set_TR1;
 set_Timer_1_for_Mode_0(0x1D64);
 }

 if(P06 == 1)
 {
 clr_ET1;
 clr_EA;
 clr_TR1;
 toggle = 0;
 }

 if((P05 == 1) && (P06 == 1))
 {
 clr_ET1;
 clr_EA;
 clr_TR1;

 ms = 0;
 sec = 0;
 min = 0;
 hrs = 0;

 toggle = 0;
 set_Timer_1_for_Mode_0(0x1D64);
 }

 print_C(2, 1, hrs);
 print_C(5, 1, min);
 print_C(8, 1, sec);
 print_I(11, 2, ms);

 if(!toggle)
 {
 LCD_goto(4, 1);
 LCD_putchar(':');
 LCD_goto(7, 1);
 LCD_putchar(':');
 LCD_goto(10, 1);
 LCD_putchar(':');
 }
 else
 {
 LCD_goto(4, 1);
 LCD_putchar(' ');
 LCD_goto(7, 1);
 LCD_putchar(' ');
 LCD_goto(10, 1);
 LCD_putchar(' ');
 }

 };
}

void setup(void)
{
 disable_clock_source(ECLK);
 set_clock_source(HIRC);
 set_clock_division_factor(1);

 P05_Input_Mode;
 P06_Input_Mode;

 clr_T1M;
 TIMER1_MODE0_ENABLE;
 set_Timer_1_for_Mode_0(0x1D64);

 LCD_init();
 LCD_clear_home();
}

void set_clock_source(unsigned char clock_source)
{
switch(clock_source)
{
 case LIRC:
 {
 set_OSC1;
 clr_OSC0;

 break;
 }

 case ECLK:
 {
 set_EXTEN1;
 set_EXTEN0;

 while((CKSWT & SET_BIT3) == 0);

 clr_OSC1;
 set_OSC0;

 break;
 }

 default:
 {
 set_HIRCEN;

 while((CKSWT & SET_BIT5) == 0);

 clr_OSC1;
 clr_OSC0;

 break;
 }
 }

 while((CKEN & SET_BIT0) == 1);
}

void disable_clock_source(unsigned char clock_source)
{
 switch(clock_source)
 {
 case HIRC:
 {
 clr_HIRCEN;
 break;
 }

 default:
 {
 clr_EXTEN1;
 clr_EXTEN0;
 break;
 }
 }
}

void set_clock_division_factor(unsigned char value)
{
 CKDIV = value;
}

void set_Timer_1_for_Mode_0(unsigned int value)
{
 TL1 = (value & 0x1F);
 TH1 = ((value & 0xFFE0) >> 5);
}

unsigned int get_Timer_1_for_Mode_0(void)
{
 unsigned char hb = 0x00;
 unsigned char lb = 0x00;
 unsigned int value = 0x0000;

 value = TH1;
 value <<= 8;
 value |= TL1;

 lb = (value & 0x001F);
 hb = ((value & 0xFFE0) >> 5);

 value = hb;

 value <<= 8;
 value |= lb;

 return value;
}

void print_C(unsigned char x_pos, unsigned char y_pos, unsigned char value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 10) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

void print_I(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 100) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

Firstly, let us inspect the setup code:

disable_clock_source(ECLK);
set_clock_source(HIRC);
set_clock_division_factor(1);

P05_Input_Mode;
P06_Input_Mode;

clr_T1M;
TIMER1_MODE0_ENABLE;
set_Timer_1_for_Mode_0(0x1D64);

The system clock is set to 8MHz using HIRC. As per schematic and code, two buttons labelled Start

and Stop are connected with P05 and P06 respectively. Timer 1 is set up in Mode 1 with prescaled

system clock source (Fsys / 12). Thus, it has an input clock frequency of 666.67kHz. Thus, one timer

tick is 1.5μs. To get the timer overflow and reset every 1 millisecond we will need:

1𝑚𝑠

1.5𝜇𝑠
 ≈ 667 counts

Since the timer is an up-counting timer and has a resolution of 13-bits, it will overflow after 8191

counts. Thus, to get 667 counts, we need to set is at:

(8191 – 667) = 7524 or 0x1D64 counts

The timer is, therefore, set at this count value.

Now how do we set the timer in Mode 1?

Check the register diagram below. The grey part is what is ignored. Remember that TL and TH are 16-

bits as a whole but out of that we will just be using 13-bits.

In our case, the count 0x1D64 is segmented as the following in binary:

0001 1101 0110 0100

This number is masked as follows:

All of these is done by the following function:

void set_Timer_1_for_Mode_0(unsigned int value)
{
 TL1 = (value & 0x1F);
 TH1 = ((value & 0xFFE0) >> 5);
}

Reading the time is doing just the opposite of writing and this is accomplished by the following

function:

unsigned int get_Timer_1_for_Mode_0(void)
{
 unsigned char hb = 0x00;
 unsigned char lb = 0x00;
 unsigned int value = 0x0000;

 value = TH1;
 value <<= 8;
 value |= TL1;

 lb = (value & 0x001F);
 hb = ((value & 0xFFE0) >> 5);

 value = hb;
 value <<= 8;
 value |= lb;

 return value;
}

Unlike the previous example, here interrupt is used to keep time. The timer run bit, global interrupt

and Timer 1 interrupt are all enabled when the start button is pressed and are all disabled when the

stop button is pressed or the stopwatch is reset by pressing both buttons.

if(P05 == 1)
{
 set_ET1;
 set_EA;
 set_TR1;
 set_Timer_1_for_Mode_0(0x1D64);
}

if(P06 == 1)
{
 clr_ET1;
 clr_EA;
 clr_TR1;
 toggle = 0;
}

if((P05 == 1) && (P06 == 1))
{
 clr_ET1;
 clr_EA;
 clr_TR1;

 ms = 0;
 sec = 0;
 min = 0;
 hrs = 0;

 toggle = 0;
 set_Timer_1_for_Mode_0(0x1D64);
}

Inside the interrupt subroutine, the time keeping is done:

#pragma vector = 0x1B
__interrupt void Timer1_ISR (void)
{
 set_Timer_1_for_Mode_0(0x1D64);

 ms++;

 if(ms == 499)
 {
 toggle = ~toggle;
 }

 if(ms > 999)
 {
 ms = 0;
 sec++;

 if(sec > 59)
 {
 sec = 0;
 min++;

 if(min > 59)
 {
 min = 0;
 hrs++;

 if(hrs > 23)
 {
 hrs = 0;
 }
 }
 }
}

At every timer overflow interrupt the timer’s counter is reset to 0x1D64 to make sure that there are

667 counts before the overflow.

The time data is displayed on an LCD screen.

Demo

Demo video: https://youtu.be/egzuPC8Yox4

https://youtu.be/egzuPC8Yox4

Timer 2 Input Capture – Frequency Counter

Timer 2, as I stated before, is different in many areas from the other timers of N76E003. In my

opinion, it is best suited for measuring pulse widths, their periods and thereby frequencies. In other

words, it is the best wave capturing tool that we have in N76E003s.

Unlike conventional 8051s, there varieties of option to capture wave or generate compare-match

events.

In this segment, we will see how to make a frequency counter with Timer 2’s capture facility. We will

also see how to generate Timer 1’s output.

Code

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_3_Wire.h"

#define HIRC 0
#define LIRC 1
#define ECLK 2

#define timer_clock_speed 8000000.0

unsigned long overflow = 0;
unsigned long pulse_time = 0;
unsigned long start_time = 0;
unsigned long end_time = 0;

void setup(void);
void set_clock_source(unsigned char clock_source);
void disable_clock_source(unsigned char clock_source);
void set_clock_division_factor(unsigned char value);
void setup_GPIOs(void);
void setup_Timer_1(void);
void setup_Timer_2(void);
void setup_capture(void);
void set_Timer_1(unsigned int value);
void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned long value);

#pragma vector = 0x1B
__interrupt void Timer_1_ISR(void)
{
 set_Timer_1(0);
}

#pragma vector = 0x2B
__interrupt void Timer_2_ISR(void)
{
 clr_TF2;
 overflow++;
}

#pragma vector = 0x63
__interrupt void Input_Capture_ISR(void)
{
 if((CAPCON0 & SET_BIT0) != 0)
 {
 clr_CAPF0;
 end_time = C0H;
 end_time <<= 8;
 end_time |= C0L;
 pulse_time = ((overflow << 16) - start_time + end_time);
 start_time = end_time;
 overflow = 0;
 }
}

void main(void)
{
 register float f = 0.0;

 setup();

 LCD_init();
 LCD_clear_home();
 LCD_goto(1, 0);
 LCD_putstr("Nu Freq. Meter");
 LCD_goto(0, 1);
 LCD_putstr("Freq./Hz:");

 while(1)
 {
 f = (timer_clock_speed / ((float)pulse_time));
 lcd_print(11, 1, ((unsigned long)f));
 Timer0_Delay1ms(100);
 };
}

void setup(void)
{
 disable_clock_source(ECLK);
 set_clock_source(HIRC);
 set_clock_division_factor(1);
 setup_GPIOs();
 setup_capture();
 setup_Timer_1();
 setup_Timer_2();
 set_EA;
}

void set_clock_source(unsigned char clock_source)
{
 switch(clock_source)
 {
 case LIRC:
 {
 set_OSC1;
 clr_OSC0;

 break;
 }

 case ECLK:
 {
 set_EXTEN1;
 set_EXTEN0;

 while((CKSWT & SET_BIT3) == 0);

 clr_OSC1;
 set_OSC0;

 break;
 }

 default:
 {
 set_HIRCEN;

 while((CKSWT & SET_BIT5) == 0);

 clr_OSC1;
 clr_OSC0;

 break;
 }
 }

 while((CKEN & SET_BIT0) == 1);
}

void disable_clock_source(unsigned char clock_source)
{
 switch(clock_source)
 {
 case HIRC:
 {
 clr_HIRCEN;
 break;
 }

 default:
 {
 clr_EXTEN1;
 clr_EXTEN0;
 break;
 }
 }
}

void set_clock_division_factor(unsigned char value)
{
 CKDIV = value;
}

void setup_GPIOs(void)
{
 P00_PushPull_Mode;
 P12_Input_Mode;
}

void setup_Timer_1(void)
{
 set_T1M;
 TIMER1_MODE1_ENABLE;
 set_Timer_1(0);

 P2S |= SET_BIT3;
 set_TR1;
 set_ET1;
}

void setup_Timer_2(void)
{
 T2CON &= ~SET_BIT0;
 T2MOD = 0x00;
 set_TR2;
 set_ET2;
}

void setup_capture(void)
{
 IC0_P12_CAP0_FallingEdge_Capture;
 set_ECAP;
}

void set_Timer_1(unsigned int value)
{
 TH1 = ((value && 0xFF00) >> 8);
 TL1 = (value & 0x00FF);
}

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned long value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 10000) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 10000) / 1000) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar(((value % 1000) / 100) + 0x30);
 LCD_goto((x_pos + 3), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 4), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

Before explaining the capture part, I would like to put emphasis on how to generate Timer 1’s output.

The setup for timer is nothing different from other timer settings in Mode 1 except for the part shown

below:

P2S |= SET_BIT3;

This code sets the timer output. Note that in this example, the system clock speed and hence the clock

speed of all hardware sub-systems is set to 8MHz with HIRC and clock divider. Thus, Timer 1’s output

will be high for:

65536

8𝑀𝐻𝑧
 = 8.192ms

and low for the same amount of time. So, the total time period of Timer 1’s output is roughly 16ms.

Therefore, the frequency of this output is about 60Hz.

P00 is the Timer 1’s output pin and P12 is the capture pin of Timer 2. When P00 and P12 are shorted

together, the frequency counter made here with Timer 2 and its capture unit will read 60Hz.

So how it is done by Timer 2 and the capture unit?

Here in this example, we don’t need the compare-match feature for the measurement of waveform

timings and so all compare match features are disabled. We need to reload the timer when it

overflows. Since the timer’s counter registers are not manipulated, they are set to zeros by default

and so the reload count is zero. These are reflected by the first two lines of the timer’s setup:

void setup_Timer_2(void)
{
 T2CON &= ~SET_BIT0;
 T2MOD = 0x00;

 set_TR2;
 set_ET2;
}

Next, Timer 2 is started with its interrupt enabled.

Finally, the capture pin and its channel to be used are enabled using BSP-based definition. Capture

interrupt is also enabled.

void setup_capture(void)
{
 IC0_P12_CAP0_FallingEdge_Capture;
 set_ECAP;
}

Note that this is the confusing part of the code. There are three capture channels (CAP0, CAP1 and

CAP2). These channels share 9 input capture GPIO pins. The pins are cleverly multiplexed. Detection

edge selections can be also done. The BSP definition-names state these parameters. For example, the

definition used here means:

 “input capture pin 0 connected to P12 GPIO pin is connected to capture channel 0 to detect falling

edge transitions”.

Once the hardware setup is complete, the game now resides in the capture interrupt part:

#pragma vector = 0x63
__interrupt void Input_Capture_ISR(void)
{
 if((CAPCON0 & SET_BIT0) != 0)
 {
 clr_CAPF0;
 end_time = C0H;
 end_time <<= 8;
 end_time |= C0L;
 pulse_time = ((overflow << 16) - start_time + end_time);
 start_time = end_time;
 overflow = 0;
 }
}

Since there is one interrupt vector for all three capture channels, we have check first which capture

channel caused the interrupt and clear that particular interrupt flag soon. Capture interrupt, in this

case, occurs when a falling edge is detected by CAP0 channel. When such an interrupt occurs, the time

of its happening, i.e. the counter value of Timer 2 at that instance is stored. This marks the first falling

edge event. To measure period or frequency of a waveform, another such falling edge is needed.

Therefore, when another falling edge is detected by the capture hardware, the process repeats. This

results in the time capture of two events.

We know the frequency of the timer’s clock and so we can find the value of its each tick. We have two

captures in form of two Timer 2 counts. We can find the difference between them and thereby

compute the time period (pulse_time).

Since the time period of the captured waveform is calculated, its frequency can be deduced. This is

done in the main loop.

f = (timer_clock_speed / ((float)pulse_time));

Demo

Demo video: https://youtu.be/33lRj7zE1JM

https://youtu.be/33lRj7zE1JM

Timer 2 Pulse Width Capture – Interfacing HC-SR04 SONAR

In the last segment, it was demonstrated how to capture a waveform and compute its frequency using

Timer 2’s capture hardware. This segment is basically an extension of the last segment. Here, it will be

shown how we can use two capture channels connected to the same capture pin to find out the pulse

width of a pulse. For demoing this idea, a HC-SR04 ultrasonic SONAR sensor is used. The SONAR sensor

gives a pulse output that varies in width according to the distance between the sensor and a target.

Code

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "LCD_3_Wire.h"

#define HIRC 0
#define LIRC 1
#define ECLK 2

unsigned int pulse_width = 0;

void setup(void);
void set_clock_source(unsigned char clock_source);
void disable_clock_source(unsigned char clock_source);
void set_system_clock_frequency(unsigned long F_osc, unsigned long F_sys);
void setup_GPIOs(void);
void setup_Timer_2(void);

void setup_capture(void);
void set_Timer_2(unsigned int value);
void set_Timer_2_reload_compare(unsigned int value);
void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned int value);

void Input_Capture_ISR(void)
interrupt 12
{
 if(CAPCON0 & 0x01)
 {
 clr_CAPF0;
 }

 if(CAPCON0 & 0x02)
 {
 clr_CAPF1;

 pulse_width = C1H;
 pulse_width <<= 8;
 pulse_width |= C1L;
 }
}

void main(void)
{
 unsigned int range = 0;

 LCD_init();
 LCD_clear_home();
 LCD_goto(0, 0);
 LCD_putstr("Pamge/cm:");
 LCD_goto(0, 1);
 LCD_putstr("Pulse/us:");

 setup();

 while(1)
 {
 set_P11;
 Timer3_Delay10us(1);
 clr_P11;

 range = ((unsigned int)(((float)pulse_width) / 58.0));

 lcd_print(11, 0, range);
 lcd_print(11, 1, pulse_width);
 Timer0_Delay1ms(900);
 };
}

void setup(void)
{
 disable_clock_source(ECLK);

 set_clock_source(HIRC);
 set_system_clock_frequency(16, 16);
 setup_GPIOs();
 setup_capture();
 setup_Timer_2();
 set_EA;
}

void set_clock_source(unsigned char clock_source)
{
 switch(clock_source)
 {
 case LIRC:
 {
 set_OSC1;
 clr_OSC0;

 break;
 }

 case ECLK:
 {
 set_EXTEN1;
 set_EXTEN0;

 while((CKSWT & SET_BIT3) == 0);

 clr_OSC1;
 set_OSC0;

 break;
 }

 default:
 {
 set_HIRCEN;

 while((CKSWT & SET_BIT5) == 0);

 clr_OSC1;
 clr_OSC0;

 break;
 }
 }

 while((CKEN & SET_BIT0) == 1);
}

void disable_clock_source(unsigned char clock_source)
{
 switch(clock_source)
 {
 case HIRC:

 {
 clr_HIRCEN;
 break;
 }

 default:
 {
 clr_EXTEN1;
 clr_EXTEN0;
 break;
 }
 }
}

void set_system_clock_frequency(unsigned long F_osc, unsigned long F_sys)
{
 F_osc = (F_osc / (0x02 * F_sys));

 if((F_osc >= 0x00) && (F_osc <= 0xFF))
 {
 CKDIV = ((unsigned char)F_osc);
 }
}

void setup_GPIOs(void)
{
 P11_PushPull_Mode;
 P12_Input_Mode;
}

void setup_Timer_2(void)
{
 set_Timer_2_reload_compare(0);
 set_Timer_2(0);
 set_LDEN;
 T2MOD |= 0x01;
 T2MOD |= 0x20;
 set_TR2;
}

void setup_capture(void)
{
 CAPCON0 = 0x30;
 CAPCON1 = 0x01;
 CAPCON2 = 0x30;
 CAPCON3 = 0x00;
 CAPCON4 = 0x00;
 set_ECAP;
}

void set_Timer_2(unsigned int value)

{
 TL2 = (value & 0x00FF);
 TH2 = ((value & 0xFF00) >> 0x08);
}

void set_Timer_2_reload_compare(unsigned int value)
{
 RCMP2L = (value & 0x00FF);
 RCMP2H = ((value & 0xFF00) >> 0x08);
}

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 10000) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 10000) / 1000) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar(((value % 1000) / 100) + 0x30);
 LCD_goto((x_pos + 3), y_pos);
 LCD_putchar(((value % 100) / 10) + 0x30);
 LCD_goto((x_pos + 4), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

HC-SR04 SONAR sensor has two pins apart from power supply pins. These pins are labelled “Echo” and

“Trigger”. When the trigger pin of a HC-SR04 is set high for about 10μs, it acknowledges this short

duration pulse in the trigger pin as a command from its host micro to measure and return distance

data.

P11 is setup as the trigger pin and P12 is set up as the echo pin. The concepts of input capture are

same as in the last capture example but there are a few minor changes. Firstly, the system clock speed

is set to full 16MHz using HIRC. Secondly, the setup of Timer 2 is slightly changed. Auto-reloading is

enabled this time. Timer 2’s clock is prescaled to 1MHz. This is done so in order to make sure that the

capture has a resolution of 1μs and the timer doesn’t overflow while taking measurements. The

maximum possible width of a pulse from HC-SR04 is 38ms when no obstacle is detected by it but with

this timer setup we can measure pulse widths up to 65ms. Timer 2 is also set up as to reset its count

when a CAP0 event occurs.

void setup_Timer_2(void)
{
 set_Timer_2_reload_compare(0);
 set_Timer_2(0);
 set_LDEN;
 T2MOD |= 0x01;
 T2MOD |= 0x20;
 set_TR2;
}

In order to measure pulse widths, we can use one capture channel in both edge capture mode or use

two capture channels connected to the same input capture GPIO pin detecting different edges. The

latter is used here.

void setup_capture(void)
{
 CAPCON0 = 0x30;
 CAPCON1 = 0x01;
 CAPCON2 = 0x30;
 CAPCON3 = 0x00;
 CAPCON4 = 0x00;
 set_ECAP;
}

I didn’t use BSP-based definitions for setting up captures in this example because of some limitation.

BSP-based definitions reset selections. This is why I configured the input capture control registers

manually. Two capture channels having different edge detections are used and both of these channels

share P12 or IC0 pin.

Now when HC-SR04 is triggered, it will give out a pulse. We have to measure the width of that pulse.

A pulse is defined by a rising edge and a falling edge. CAP0 channel is set to detect the rising edge of

the pulse and reset Timer 2 to 0 count. CAP1 channel is used to detect the falling edge of the same

pulse and read Timer 2’s count. This count represents pulse width in microseconds.

void Input_Capture_ISR(void)
interrupt 12
{
 if(CAPCON0 & 0x01)
 {
 clr_CAPF0;
 }

 if(CAPCON0 & 0x02)
 {
 clr_CAPF1;

 pulse_width = C1H;
 pulse_width <<= 8;
 pulse_width |= C1L;
 }
}

In the main loop, distance is calculated using this measured pulse width time and the formula given in

HC-SR04’s datasheet.

range = ((unsigned int)(((float)pulse_width) / 58.0));

The distance found between an object and HC-SR04 is displayed on a text LCD.

Demo

Demo video: https://youtu.be/icGIjSAh8SM

https://youtu.be/icGIjSAh8SM

Timer 3 – Driving 7 Segments, LED and Scanning Keypad

We all know that N76E003 is a cool chip but it lacks GPIOs unlike other chips of similar capabilities.

Thus, we must be miser while using GPIOs. When it is needed to interface several inputs and outputs

with a microcontroller using fewer pins, we often take the assistance of logic ICs like shift registers,

counters, multiplexers, etc. We have already used this technique while making the 3-wire LCD

interface. An LCD has its own controller(s) to take care of projecting data on the screen once data has

been feed to it. However, that’s not the case with seven segment displays and keypads when used

without any specialized driver IC like TM1640/MAX7219. It is, then, a job for a host micro to do the

scanning and data manipulation periodically with affecting other tasks. This can be achieved easily

with a timer.

In this segment, we will see how the aforementioned is done with Timer 3. For the demo, I used a

salvaged temperature controller’s I/O unit. The I/O unit consists of two 4-digit seven segment displays,

four LEDs and four push buttons. It is made with a 74HC164 Serial-In-Parallel-Out (SPIO) shift register

and a 74HC145 BCD-to-Decimal decoder. In order to use it in real-time, its displays, LEDs and buttons

should be scanned and updated at a fast rate without hindering any part of an application running in

main loop.

Code

#include "N76E003_iar.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"

#define HIRC 0
#define LIRC 1
#define ECLK 2

#define GATE_HIGH set_P15
#define GATE_LOW clr_P15

#define CLK_HIGH set_P16
#define CLK_LOW clr_P16

#define A_HIGH set_P00
#define A_LOW clr_P00

#define B_HIGH set_P01
#define B_LOW clr_P01

#define C_HIGH set_P02
#define C_LOW clr_P02

#define D_HIGH set_P03
#define D_LOW clr_P03

#define SW P17

#define top_seg 4
#define bot_seg 0

#define HIGH 1
#define LOW 0

const unsigned char num[0x0A] = {0xED, 0x21, 0x8F, 0xAB, 0x63, 0xEA, 0xEE,
0xA1, 0xEF, 0xEB};
unsigned char data_values[0x09] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00};

unsigned char SW_in = 0;
unsigned char n = 0;

void setup(void);
void setup_GPIOs(void);
void setup_Timer_3(void);
void set_Timer_3(unsigned int value);
unsigned int get_Timer_3(void);
void write_74HC164(register unsigned char value);

void write_74HC145(register unsigned char channel);
void show_LEDs(unsigned char LED1_state, unsigned char LED2_state, unsigned
char LED3_state, unsigned char LED4_state);
void show_numbers(signed int value, unsigned char pos);

#pragma vector = 0x83
__interrupt void Timer3_ISR(void)
{
 write_74HC164(data_values[n]);
 write_74HC145(n);

 n++;
 if(n > 9)
 {
 n = 0;
 }

 clr_TF3;
}

void main (void)
{

 unsigned int i = 0;
 unsigned int j = 9999;

 setup();

 while(1)
 {
 switch(SW_in)
 {
 case 1:
 {
 show_LEDs(1, 0, 0, 0);
 break;
 }
 case 2:
 {
 show_LEDs(0, 1, 0, 0);
 break;
 }
 case 3:
 {
 show_LEDs(0, 0, 1, 0);
 break;
 }
 case 4:
 {
 show_LEDs(0, 0, 0, 1);
 break;
 }
 }

 SW_in = 0x00;

 i++;
 j--;

 if(i > 9999)
 {
 i = 0;
 j = 9999;
 }

 show_numbers(i, bot_seg);
 show_numbers(j, top_seg);

 Timer1_Delay10ms(40);
 show_LEDs(0, 0, 0, 0);
 };
}

void setup(void)
{
 setup_GPIOs();
 setup_Timer_3();
}

void setup_GPIOs(void)
{
 P00_PushPull_Mode;
 P01_PushPull_Mode;
 P02_PushPull_Mode;
 P03_PushPull_Mode;
 P15_PushPull_Mode;
 P16_PushPull_Mode;
 P17_Input_Mode;
}

void setup_Timer_3(void)
{
 set_Timer_3(0xF9C0);
 set_ET3;
 set_EA;
 set_TR3;
}

void set_Timer_3(unsigned int value)
{
 RL3 = (value & 0x00FF);
 RH3 = ((value && 0xFF00) >> 8);
}

unsigned int get_Timer_3(void)

{
 unsigned int value = 0x0000;

 value = RH3;
 value <<= 8;
 value |= RL3;

 return value;
}

void write_74HC164(register unsigned char value)
{
 register unsigned char s = 0x08;

 while(s > 0)
 {
 if((value & 0x80) != 0x00)
 {
 GATE_HIGH;
 }
 else
 {
 GATE_LOW;
 }

 CLK_HIGH;
 CLK_LOW;

 value <<= 1;
 s--;
 };
}

void write_74HC145(register unsigned char channel)
{
 P0 = 0x00;

 switch(channel)
 {
 case 0:
 {
 asm("nop");

 if(SW == LOW)
 {
 SW_in = 1;
 }
 break;
 }

 case 1:
 {
 P0 = 0x01;
 break;

 }

 case 2:
 {
 P0 = 0x02;
 break;
 }

 case 3:
 {
 P0 = 0x03;
 break;
 }

 case 4:
 {
 P0 = 0x04;
 break;
 }

 case 5:
 {
 P0 = 0x05;
 break;
 }

 case 6:
 {
 P0 = 0x06;
 break;
 }

 case 7:
 {
 P0 = 0x07;
 asm("nop");

 if(SW == LOW)
 {
 SW_in = 2;
 }
 break;
 }

 case 8:
 {
 P0 = 0x08;
 asm("nop");

 if(SW == LOW)
 {
 SW_in = 3;
 }
 break;
 }

 case 9:
 {
 P0 = 0x09;
 asm("nop");

 if(SW == LOW)
 {
 SW_in = 4;
 }
 break;
 }
 }
}

void show_LEDs(unsigned char LED1_state, unsigned char LED2_state, unsigned
char LED3_state, unsigned char LED4_state)
{
 switch(LED1_state)
 {
 case HIGH:
 {
 data_values[8] |= 0x80;
 break;
 }
 case LOW:
 {
 data_values[8] &= 0x7F;
 break;
 }
 }

 switch(LED2_state)
 {
 case HIGH:
 {
 data_values[8] |= 0x40;
 break;
 }
 case LOW:
 {
 data_values[8] &= 0xBF;
 break;
 }
 }

 switch(LED3_state)
 {
 case HIGH:
 {
 data_values[8] |= 0x08;
 break;
 }
 case LOW:
 {
 data_values[8] &= 0xF7;

 break;
 }
 }

 switch(LED4_state)
 {
 case HIGH:
 {
 data_values[8] |= 0x02;
 break;
 }
 case LOW:
 {
 data_values[8] &= 0xFD;
 break;
 }
 }
}

void show_numbers(signed int value, unsigned char pos)
{
 register unsigned char ch = 0x00;

 if((value >= 0) && (value <= 9))
 {
 ch = (value % 10);
 data_values[(0 + pos)] = num[ch];
 data_values[(1 + pos)] = 0x00;
 data_values[(2 + pos)] = 0x00;
 data_values[(3 + pos)] = 0x00;
 }
 else if((value > 9) && (value <= 99))
 {
 ch = (value % 10);
 data_values[(0 + pos)] = num[ch];
 ch = ((value / 10) % 10);
 data_values[(1 + pos)] = num[ch];
 data_values[(2 + pos)] = 0x00;
 data_values[(3 + pos)] = 0x00;
 }
 else if((value > 99) && (value <= 999))
 {
 ch = (value % 10);
 data_values[(0 + pos)] = num[ch];
 ch = ((value / 10) % 10);
 data_values[(1 + pos)] = num[ch];
 ch = ((value / 100) % 10);
 data_values[(2 + pos)] = num[ch];
 data_values[(3 + pos)] = 0x00;
 }
 else if((value > 999) && (value <= 9999))
 {
 ch = (value % 10);
 data_values[(0 + pos)] = num[ch];
 ch = ((value / 10) % 10);

 data_values[(1 + pos)] = num[ch];
 ch = ((value / 100) % 10);
 data_values[(2 + pos)] = num[ch];
 ch = (value / 1000);
 data_values[(3 + pos)] = num[ch];
 }
}

Schematic

Explanation

Timer 3’s internal hardware is very simple. It is an up-counting timer and is run by using system clock

as clock source. There is a prescalar to reduce the system clock input. The main feature of Timer 3 is

it auto-reload feature. This feature basically allows us to forget reloading its 16-bit counter unlike

Timer 0 and 1. There no external input or output option for this timer. Owing to all these, it is most

suitable for time-base generation and serial communication.

In this demo, Timer 3 is set to interrupt every 100μs.

Timer 3 ISR =
(65536 − 𝑅𝑒𝑙𝑜𝑎𝑑 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒)

𝑇𝑖𝑚𝑒𝑟 3 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 =

(0xFFFF – 0xF9C0)

16𝑀𝐻𝑧
 = 100μs

The following code sets up Timer 3 as discussed:

void setup_Timer_3(void)
{
 set_Timer_3(0xF9C0);
 set_ET3;
 set_EA;
 set_TR3;
}

Note that Timer 3’s input clock and system clock frequency is 16MHz since no prescalar is used.

Now what we are doing inside the timer interrupt? According to the schematic and objective of this

project, we need to update the seven segment displays and read the 4-bit keypad so fast that it looks

as if everything is being done without any delay and in real time.

#pragma vector = 0x83
__interrupt void Timer3_ISR(void)
{
 write_74HC164(data_values[n]);
 write_74HC145(n);

 n++;
 if(n > 9)
 {
 n = 0;
 }

 clr_TF3;
}

Inside timer ISR, both logic ICs are updated. Firstly, the number to be displayed is sent to the 74HC164

IC and then the seven-segment display to show the number is updated by writing the 74HC145 IC. At

every interrupt, one seven segment display is updated. There are 8 such displays and so it takes less

than a millisecond to update all these displays. Everything seems to complete in the blink of an eye.

During this time the keypad is also scanned in the main. With different keys, different LEDs light up.

Demo

Demo video: https://youtu.be/Gd6BecOFtxk

https://youtu.be/Gd6BecOFtxk

Simple PWM – RGB LED Fading

PWM hardware is another basic requirement for any modern-era microcontroller. We can use PWM

for a number of applications like motor control, light control, switch-mode power supplies (SMPSs),

etc. With PWM we can also simulate digital-to-analogue converter (DAC). Fortunately, N76E003

comes with a separate PWM block that is not a part of any internal timer. It has all the feature that

you can imagine. It can be used to generate simple independent 6 single channel PWMs. It can also

be used to generate complementary and interdependent PWMs with dead time feature.

Code

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"

unsigned int R_value[10] = {20, 150, 250, 360, 440, 560, 680, 820, 900, 1020};
unsigned int G_value[10] = {440, 560, 680, 820, 900, 1020, 20, 150, 250, 360};
unsigned int B_value[10] = {900, 1020, 20, 150, 250, 360, 440, 560, 680, 820};

void set_PWM_period(unsigned int value);
void set_PWM0(unsigned int value);
void set_PWM1(unsigned int value);
void set_PWM2(unsigned int value);
void set_PWM3(unsigned int value);
void set_PWM4(unsigned int value);
void set_PWM5(unsigned int value);

void main(void)
{
 signed int i = 0;
 signed char j = 0;

 P01_PushPull_Mode;
 P10_PushPull_Mode;
 P11_PushPull_Mode;

 PWM1_P11_OUTPUT_ENABLE;
 PWM2_P10_OUTPUT_ENABLE;
 PWM4_P01_OUTPUT_ENABLE;

 PWM_IMDEPENDENT_MODE;
 PWM_EDGE_TYPE;
 set_CLRPWM;
 PWM_CLOCK_FSYS;
 PWM_CLOCK_DIV_64;
 PWM_OUTPUT_ALL_NORMAL;
 set_PWM_period(1023);
 set_PWMRUN;

 while(1)
 {
 for(i = 0; i < 1024; i += 10)
 {
 set_PWM1(i);
 delay_ms(20);
 }
 for(i = 1023; i > 0; i -= 10)
 {
 set_PWM1(i);

 delay_ms(20);
 }

 for(i = 0; i < 1024; i += 10)
 {
 set_PWM2(i);
 delay_ms(20);
 }
 for(i = 1023; i > 0; i -= 10)
 {
 set_PWM2(i);
 delay_ms(20);
 }

 for(i = 0; i < 1024; i += 10)
 {
 set_PWM4(i);
 delay_ms(20);
 }
 for(i = 1023; i > 0; i -= 10)
 {
 set_PWM4(i);
 delay_ms(20);
 }

 delay_ms(600);

 for(i = 0; i <=9; i++)
 {
 for(j = 0; j <= 9; j++)
 {
 set_PWM4(R_value[j]);
 set_PWM1(G_value[j]);
 set_PWM2(B_value[j]);
 delay_ms(200);
 }
 for(j = 9; j >= 0; j--)
 {
 set_PWM4(R_value[j]);
 set_PWM1(G_value[j]);
 set_PWM2(B_value[j]);
 delay_ms(200);
 }
 }

 delay_ms(600);
 }
}

void set_PWM_period(unsigned int value)
{
 PWMPL = (value & 0x00FF);
 PWMPH = ((value & 0xFF00) >> 8);
}

void set_PWM0(unsigned int value)
{
 PWM0L = (value & 0x00FF);
 PWM0H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM1(unsigned int value)
{
 PWM1L = (value & 0x00FF);
 PWM1H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM2(unsigned int value)
{
 PWM2L = (value & 0x00FF);
 PWM2H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM3(unsigned int value)
{
 PWM3L = (value & 0x00FF);
 PWM3H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM4(unsigned int value)
{
 set_SFRPAGE;
 PWM4L = (value & 0x00FF);
 PWM4H = ((value & 0xFF00) >> 8);
 clr_SFRPAGE;
 set_LOAD;
}

void set_PWM5(unsigned int value)
{
 set_SFRPAGE;
 PWM5L = (value & 0x00FF);
 PWM5H = ((value & 0xFF00) >> 8);
 clr_SFRPAGE;
 set_LOAD;
}

Schematic

Explanation

PWM generated by the N76E003’s PWM hardware is based on compare-match principle and this is

evident from its block diagram. There are 6 PWM channels and they can be used independently or as

interdependent groups to form complimentary PWMs. PWMs generated by N76E003 can be edge-

aligned or centre-aligned PWMs as per user’s requirement. The PWM block can be clocked directly

by the system clock or by Timer 1 overflow. Additionally, there is a prescalar unit to reduce input clock

source.

For demonstrating N76E003’s PWM feature, I used an RGB LED. Three independent PWMs were

generated using PWM channels 1,2 and 4. Let us look into the process of setting up the PWM channels

and the PWM hardware. We must firstly set the PWM GPIOs as push-pull GPIOs since PWM is an

output function of GPIO pins. We must also enable the PWM output channels we want to use.

P01_PushPull_Mode;
P10_PushPull_Mode;
P11_PushPull_Mode;
PWM1_P11_OUTPUT_ENABLE;
PWM2_P10_OUTPUT_ENABLE;
PWM4_P01_OUTPUT_ENABLE;
Secondly, the PWM hardware is set up according to our needs. Since we need independent PWMs

here, independent PWM mode is selected. Edge-align PWM is selected since it is most easy to

understand and use. The PWM channels are reset before using them. The PWM outputs are non-

inverted and so they are characterized as normal PWMs. Here, I use system clock as the clock source

for the PWM block but it is prescaled/divided by 64 to get an effective PWM clock of 250kHz. The

PWM resolution is set to 10-bits when we set the period count or maximum PWM value/duty cycle.

Setting the period count yields in setting up the internal PWM counter. This gives a PWM of

approximately 245Hz frequency or 4ms period. Finally, the PWM hardware is enabled after setting up

all these.

PWM_IMDEPENDENT_MODE;
PWM_EDGE_TYPE;
set_CLRPWM;
PWM_CLOCK_FSYS;
PWM_CLOCK_DIV_64;
PWM_OUTPUT_ALL_NORMAL;
set_PWM_period(1023);
set_PWMRUN;

To change PWM duty cycle, functions like the one shown below is called. After altering the duty cycle

or compare value, the new value is loaded and run.

void set_PWMn(unsigned int value)
{
 PWMnL = (value & 0x00FF);
 PWMnH = ((value & 0xFF00) >> 8);
 set_LOAD;
}

In the demo, the RGB LED fades different colours as a symbol of changing PWMs.

Demo

Demo video: https://youtu.be/vomQy0alnPU

https://youtu.be/vomQy0alnPU

Complementary PWM with Dead Time

In the last section, we saw how we can generate independent PWM. Now we will see complimentary

or group PWM with dead-time. We will also see the things that were skipped in the previous segment.

Complementary PWM with dead-time feature is a must-have feature of any PWM drives in today’s

embedded-system industry. Unlike the simple PWM we saw previously, this kind of PWM has most

usage. Complementary PWM with dead-time is used in applications where we need to design motor

controllers, SMPSs, inverters, etc with H-bridges or half-bridges. In such applications, PWMs need to

operate in groups while ensuring that both PWMs don’t turn on at the same time. One PWM in a

group should be the opposite/antiphase of the other in terms of duty-cycle or waveshape.

Code

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"

void set_PWM_period(unsigned int value);
void set_PWM0(unsigned int value);
void set_PWM1(unsigned int value);
void set_PWM2(unsigned int value);
void set_PWM3(unsigned int value);
void set_PWM4(unsigned int value);
void set_PWM5(unsigned int value);
void set_PWM_dead_time(unsigned int value);

void main(void)
{
 signed int i = 0;

 P11_PushPull_Mode;
 P12_PushPull_Mode;

 PWM0_P12_OUTPUT_ENABLE;
 PWM1_P11_OUTPUT_ENABLE;

 PWM_COMPLEMENTARY_MODE;
 PWM_CENTER_TYPE;
 set_CLRPWM;
 PWM_CLOCK_FSYS;
 PWM_CLOCK_DIV_64;
 PWM0_OUTPUT_INVERSE;
 PWM1_OUTPUT_INVERSE;
 set_PWM_period(600);
 set_PWM_dead_time(40);
 PWM01_DEADTIME_ENABLE;
 set_PWMRUN;

 while(1)
 {
 for(i = 0; i < 600; i++)
 {
 set_PWM0(i);
 Timer0_Delay1ms(5);
 }
 for(i = 600; i > 0; i--)
 {
 set_PWM0(i);
 Timer0_Delay1ms(5);
 }
 };
}

void set_PWM_period(unsigned int value)
{
 PWMPL = (value & 0x00FF);
 PWMPH = ((value & 0xFF00) >> 8);
}

void set_PWM0(unsigned int value)
{
 PWM0L = (value & 0x00FF);
 PWM0H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM1(unsigned int value)
{
 PWM1L = (value & 0x00FF);
 PWM1H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM2(unsigned int value)
{
 PWM2L = (value & 0x00FF);
 PWM2H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM3(unsigned int value)
{
 PWM3L = (value & 0x00FF);
 PWM3H = ((value & 0xFF00) >> 8);
 set_LOAD;
}

void set_PWM4(unsigned int value)
{
 set_SFRPAGE;
 PWM4L = (value & 0x00FF);
 PWM4H = ((value & 0xFF00) >> 8);
 clr_SFRPAGE;
 set_LOAD;
}

void set_PWM5(unsigned int value)
{
 set_SFRPAGE;
 PWM5L = (value & 0x00FF);
 PWM5H = ((value & 0xFF00) >> 8);
 clr_SFRPAGE;
 set_LOAD;

}

void set_PWM_dead_time(unsigned int value)
{
 unsigned char hb = 0;
 unsigned char lb = 0;

 lb = (value & 0x00FF);
 hb = ((value & 0x0100) >> 8);
 BIT_TMP = EA;

 EA = 0;
 TA = 0xAA;
 TA = 0x55;
 PDTEN &= 0xEF;
 PDTEN |= hb;
 PDTCNT = lb;
 EA = BIT_TMP;
}

Schematic

Explanation

As discussed, there are two types of PWM in terms of count alignment. These are shown below:

The first type was demonstrated in the simple PWM example. The second is demonstrated here. From

the perspective of a general user, the difference in them don’t affect much. Make sure that you check

the formulae for each type before using.

The set up for complimentary PWM with dead time is no different from the simple PWM set up. As

mentioned, there are a few minor differences. First the mode is set for complimentary PWM mode.

Secondly, centre-aligned PWM is used here. The outputs are also set as inverted outputs, i.e. 100%

duty cycle means minimum PWM value/count. The dead time period is set and implemented.

P11_PushPull_Mode;
P12_PushPull_Mode;

PWM0_P12_OUTPUT_ENABLE;
PWM1_P11_OUTPUT_ENABLE;

PWM_COMPLEMENTARY_MODE;
PWM_CENTER_TYPE;
set_CLRPWM;
PWM_CLOCK_FSYS;
PWM_CLOCK_DIV_64;
PWM0_OUTPUT_INVERSE;
PWM1_OUTPUT_INVERSE;
set_PWM_period(600);
set_PWM_dead_time(40);
PWM01_DEADTIME_ENABLE;
set_PWMRUN;

Now what is dead time in complimentary PWMs? Well simply is a short duration delay that is inserted

between the polarity shifts of two PWMs in a group.

Consider a half-bridge MOSFET configuration as shown above. Perhaps it is the best way to describe

the concept of dead-time. Surely, nobody would ever want to turn on both MOSFETs simultaneously

in any condition and also during transition. Doing so would lead to a temporary short circuit between

voltage source and ground, and would also lead to unnecessary heating of the MOSFETs and even

permanent damage. By applying dead-time this can be avoided. In half/H-bridges, complimentary

PWMs ensure that when one MOSFET is on, the other is off. However, at the edges of PWM polarity

shifts, i.e. when one is rising while the other is falling, there is short but certain such short-circuit

duration. If a dead time is inserted between the transitions, it will ensure that one MOSFET is only

turned on when the other has been turned off fully.

Setting dead time requires us to disable TA protection. The function for setting dead time is shown

below:

void set_PWM_dead_time(unsigned int value)
{
 unsigned char hb = 0;
 unsigned char lb = 0;

 lb = (value & 0x00FF);
 hb = ((value & 0x0100) >> 8);
 BIT_TMP = EA;

 EA = 0;
 TA = 0xAA;
 TA = 0x55;
 PDTEN &= 0xEF;
 PDTEN |= hb;
 PDTCNT = lb;
 EA = BIT_TMP;
}

Since complimentary PWMs work in groups, changing the duty cycle of one PWM channel will affect

the other and so we don’t need to change the duty cycles of both PWMs individually. This is why only

one PWM channel is manipulated in the code.

Demo

Demo video: https://youtu.be/0APOUon1IVE

https://youtu.be/0APOUon1IVE

Wakeup Timer and Power Modes

One of key feature of many modern era microcontrollers is a way to wake up a micro once it went to

low power, sleep or idle mode. Like STM8s, N76E003 has this feature. The wakeup timer (WKT) is not

a complex hardware. As the block diagram below shows it is just a timer-counter with LIRC as clock

source. When the counter overflows, an interrupt is triggered. This interrupt wakes up the N76E003

chip.

Wakeup timer is particularly very useful when used with low power modes. In many applications, we

need to measure data on a fixed time basis while at other times when measurements are not taken,

idle times are passed. These idle periods consume power and so if we use a wakeup timer with low

power sleep mode, we can save energy. This is a big requirement for portable battery-operated

devices. Examples of such portable devices include data-loggers, energy meters and smart watches.

Code

#include "N76E003_iar.h"
#include "Common.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "soft_delay.h"

#pragma vector = 0x8B
__interrupt void WKT_ISR(void)
{
 clr_WKTR;
 clr_WKTF;
}

void main(void)
{
 unsigned char s = 0;

 P15_PushPull_Mode;

 WKCON = 0x03;
 RWK = 0X00;
 set_EWKT;
 set_EA;

 while(1)
 {

 for(s = 0; s < 9; s++)
 {
 P15 = ~P15;
 delay_ms(100);
 }

 set_WKTR;
 set_PD;

 for(s = 0; s <= 9; s++)
 {
 P15 = ~P15;
 delay_ms(300);
 }

 set_WKTR;
 set_PD;
 };
}

Schematic

Explanation

In the demo demonstrated here, P15 LED is toggle fast for nine times. This marks the start of the

demo. After this toggling has been done, both the wakeup timer and the power down modes are

turned on.

set_WKTR;
set_PD;

During Power Down time, all operations inside the micro are suspended. There is also another low

power mode called Idle Mode. Both are similar but in idle mode peripherals are kept active.

After the first set of LED toggles and power down mode, it takes about 1.5 seconds (according to the

prescalar value of 64 and 256 counts) for the wakeup timer to get triggered.

Wakeup time =
𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟 ×𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒

𝐿𝐼𝑅𝐶 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 =

64 ×256

10000
 ≈1.5s (considering variations in LIRC)

When the interrupt kicks in, the MCU is brought back to working mode and the wakeup timer is

disabled. Again, the P15 LED is toggled. This time the LED is toggled at a slower rate, indicating the

continuation of the rest of the tasks after power down. After this the process is repeated with power

down and wake up timer reenabled.

Setting up the wakeup timer requires the same stuffs that we need during a timer configuration, i.e.

a prescalar value, counter value and interrupt. These three settings are done by the following lines of

code:

WKCON = 0x03;
RWK = 0X00;
set_EWKT;
set_EA;

Since interrupt is used, WKT interrupt will be triggered when its counter rolls over.

#pragma vector = 0x8B
__interrupt void WKT_ISR(void)
{
 clr_WKTR;
 clr_WKTF;
}

When WKT interrupt is triggered, its interrupt flag should be cleared in the software.

Demo

Demo video: https://youtu.be/ZyQZmJB3FRI

https://youtu.be/ZyQZmJB3FRI

Watchdog Timer

The watchdog timer (WDT) of N76E003 is just a reset-issuing timer and the purpose of this timer is to
recover a N76E003 micro from an unanticipated event/loop that may result in unresponsive or erratic
behaviour. It is clocked with LIRC oscillator and this makes it independent from main clock (HIRC or
ECLK) failure.

LIRC is prescaled and feed to a counter. When the counter overflows, WDT interrupt is issued,

furthermore a reset is also generated based on delay. In normal running condition, the counter must

be periodically reset to 0 count to avoid reset. If for some reason this is not done then a reset will be

triggered.

The watchdog timer of N76E003 can also be used as a 6-bit general-purpose timer. However, this

usually not used as such. The only difference between using it as timer and as a watchdog timer is the

reset part.

Code

#include "N76E003.h"
#include "Common.h"
#include "Delay.h"
#include "SFR_Macro.h"
#include "Function_define.h"

void main (void)
{
 unsigned char s = 0;

 P15_PushPull_Mode;

 Timer0_Delay1ms(1000);

 for(s = 0; s <= 9; s++)
 {
 P15 = ~P15;
 Timer0_Delay1ms(60);

 }

 TA = 0xAA;
 TA = 0x55;
 WDCON = 0x07;
 set_WDCLR;
 while((WDCON | ~SET_BIT6) == 0xFF);
 EA = 1;
 set_WDTR;

 while(1)
 {
 for(s = 0; s <= 9; s++)
 {
 P15 = ~P15;
 Timer0_Delay1ms(200);
 }
 while(1);
 }
}

Schematic

Explanation

For demoing WDT, again the P15 LED is used. The code starts with it toggling states ten times. This

marks the beginning of the code and the interval prior to WDT configuration.

Next the WDT is setup. Note that the WDT is Timed-Access (TA) protected. TA protection protects

crucial hardware like brownout detection circuit and WDT hardware from erratic writes.

For using the TA hardware, we need not to follow any special procedure. To enable access to some

hardware that are TA protected like the WDT all we have to do is to write the followings to TA register:

TA = 0xAA;
TA = 0x55;

Without TA protection access, any changes to made to the registers of the TA protected hardware is

unaffected.

After enabling access to WDT, we can set it up. Setting the WDT requires us mainly to setup LIRC clock

prescalar. Once the prescalar is set we are good to go for enabling the WDT.

WDCON = 0x07;
set_WDCLR;
while((WDCON | ~SET_BIT6) == 0xFF);
set_EA;
set_WDTR;

Before all these can be done, we have to enable the WDT hardware either through In-Application

Programming (IAP) or by configuration bits during programming.

Demo

Demo video: https://youtu.be/h8LeHpnA2vY

https://youtu.be/h8LeHpnA2vY

Communication Peripheral Overview

N76E003 packs basic serial communication peripherals for I2C, SPI and UART. These interfaces

enable us to interface external EEPROM and flash memories, real-time clocks (RTC), sensors, etc.

Comm. Description I/O
Max.
Speed

Max.
Distance

Max. Possible
Number of Devices

in a Bus

UART
Asynchronous serial point-to-
point communication

2 115.2kbps 15m 2 (Point-to-Point)

SPI
Short-range synchronous master-
slave serial communication

3/4 4Mbps 0.1m Virtually unlimited

I2C
Short-range synchronous master-
slave serial communication using
one data and one clock line

2 1Mbps 0.5m 127

RS-485
Asynchronous differential two
wire serial communication

2 115.2kbps 1.2km Several

N76E003 has two hardware UARTs, one SPI and one I2C peripheral. The UART interfaces can be further

expanded to implement RS-485 and RS-422 communication protocols. With ordinary GPIOs and

optionally with hardware timers we can implement software-based UART, SPI and I2C too. However,

software methods are slow and resource-hungry. Software-based approach is, on the other hand,

needed when we have to interface devices that don’t use any of these communication topologies. For

example, the one-wire protocol used by DHT series relative humidity and temperature sensors needs

to be implemented by using an ordinary GPIO pin. Same goes for typical text and graphical LCDs.

Comm. No. of Peripheral Blocks No of GPIOs Used Default GPIO Pins Alternative GPIO Pins

UART

2

UART0
UART1

2

TXD0 = P06
RXD0 = P07

TXD1 = P16
RXD1 = P02

N/A

SPI 1 3 or 4

MOSI = P00
MISO = P01
SCK = P10
SS = P15

N/A
SS = Other GPIO pin
if hardware-based SS
pin is not used

I2C 1 2
SCL = P13
SDA = P14

SCL = P02
SDA = P16

Note that there is a conflict between UART1 and alternative I2C pins. There are also similar conflicts

with other hardware peripherals like PWMs, ADCs, etc since N76E003 packs lots of stuff in such a small

form-factor. Every single GPIO pin is precious. Try to keep things with default GPIO pins in order to

reduce conflicts with other hardware peripherals, coding and to maximize effective use of GPIOs.

Likewise bear in mind that timers have also such conflicts as they are used to implement both

hardware-based delays and the UART peripherals. You have to know for sure what you are doing, what

do you want and with which stuffs you wish to accomplish your task.

Serial Communication - UART

To date serial communication (UART) is perhaps the simplest and widely used form of communication

in use. UART block is only block available in most microcontrollers that can be easily interfaced with a

computer or a phone. Most communication modules like Bluetooth, Wi-Fi, GSM modems, GPS

modules, etc are interfaced using UART. It has incredible range and is also the backbone of other

communication methods like RS-485, RS-422, etc.

To learn more about UART visit the following link:

https://learn.mikroe.com/uart-serial-communication

Code

HMC1022.h

#define Get_Angular_Measurement 0x31
#define Start_Calibration 0xC0
#define End_Calibration 0xC1
#define Set_Magnetic_Declination_High_Byte 0x03
#define Set_Magnetic_Declination_Low_Byte 0x04

#define no_of_data_bytes_returned 0x08

#define calibration_LED P15

void read_heading(void);
void calibrate_compass(void);
void factory_reset(void);
void set_declination_angle(unsigned long angle);

https://learn.mikroe.com/uart-serial-communication

HMC1022.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "HMC1022.h"

unsigned char done = 0;
unsigned char data_bytes[no_of_data_bytes_returned] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00};

void read_heading(void)
{
 unsigned char s = 0;
 unsigned long CRC = 0;

 Send_Data_To_UART1(Get_Angular_Measurement);

 for(s = 0; s < no_of_data_bytes_returned; s++)
 {
 data_bytes[s] = Receive_Data_From_UART1();
 if(s < (no_of_data_bytes_returned - 1))
 {
 CRC += data_bytes[s];
 }
 }

 CRC = (CRC & 0xFF);

 if(CRC == data_bytes[7])
 {
 done = 1;
 }
}

void calibrate_compass(void)
{
 unsigned char s = 0x00;

 Send_Data_To_UART1(Start_Calibration);

 for(s = 0; s < 60; s++)
 {
 calibration_LED = 1;
 delay_ms(100);
 calibration_LED = 0;
 delay_ms(900);
 }

 for(s = 0; s < 60; s++)

 {
 calibration_LED = 1;
 delay_ms(400);
 calibration_LED = 0;
 delay_ms(600);
 }

 Send_Data_To_UART1(End_Calibration);
}

void factory_reset(void)
{
 Send_Data_To_UART1(0xA0);
 Send_Data_To_UART1(0xAA);
 Send_Data_To_UART1(0xA5);
 Send_Data_To_UART1(0xC5);
}

void set_declination_angle(unsigned long angle)
{
 unsigned long hb = 0;
 unsigned char lb = 0;

 lb = (angle & 0x00FF);

 hb = (angle & 0xFF00);
 hb >>= 8;

 Send_Data_To_UART1(Set_Magnetic_Declination_High_Byte);
 Send_Data_To_UART1(hb);

 Send_Data_To_UART1(Set_Magnetic_Declination_Low_Byte);
 Send_Data_To_UART1(lb);
}

main.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "LCD_2_Wire.h"
#include "HMC1022.h"

const unsigned char symbol[8] =
{
 0x00, 0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00
};

extern unsigned char done;

extern unsigned char data_bytes[no_of_data_bytes_returned];

void setup(void);
void lcd_symbol(void);

void main(void)
{
 setup();

 while(1)
 {
 read_heading();

 if(done)
 {
 LCD_goto(6, 1);
 LCD_putchar(data_bytes[2]);

 LCD_goto(7, 1);
 LCD_putchar(data_bytes[3]);

 LCD_goto(8, 1);
 LCD_putchar(data_bytes[4]);

 LCD_goto(9, 1);
 LCD_putchar('.');
 LCD_goto(10, 1);
 LCD_putchar(data_bytes[6]);

 done = 0;
 }

 P15 = ~P15;
 delay_ms(200);
 };
}

void setup(void)
{
 P15_PushPull_Mode;

 LCD_init();
 LCD_clear_home();
 lcd_symbol();
 LCD_goto(3, 0);
 LCD_putstr("Heading N");
 LCD_goto(11, 0);
 LCD_send(0, DAT);

 InitialUART1_Timer3(9600);
}

void lcd_symbol(void)
{
 unsigned char s = 0;

 LCD_send(0x40, CMD);

 for(s = 0; s < 8; s++)
 {
 LCD_send(symbol[s], DAT);
 }

 LCD_send(0x80, CMD);
}

Schematic

Explanation

The following are the commands that HMC1022 acknowledges when sent via UART:

HMC1022 gives heading data when it is requested. The highlighted command is that command.

Once requested it sends out a string of characters that carry heading information. The followings are

the response package and its details:

From the above info, it is clear that HMC1022 will return 8 bytes when requested for heading. Out of

these we need bytes 2, 3,4 and 6. The rest can be ignored for simplicity.

Data from HM1022 is received by the following function:

void read_heading(void)
{
 unsigned char s = 0;
 unsigned long CRC = 0;

 Send_Data_To_UART1(Get_Angular_Measurement);

 for(s = 0; s < no_of_data_bytes_returned; s++)
 {
 data_bytes[s] = Receive_Data_From_UART1();
 if(s < (no_of_data_bytes_returned - 1))
 {
 CRC += data_bytes[s];
 }
 }

 CRC = (CRC & 0xFF);

 if(CRC == data_bytes[7])
 {
 done = 1;
 }
}

Note that the function Send_Data_To_UART1 and Receive_Data_From_UART1 are BSP functions.

Likewise, InitialUART1_Timer3(9600) function is also a BSP function that initiates UART1 with Timer

3. As with ADC, BSP functions for UART are enough for basic setup. Try to use Timer 3 as it remains

mostly free. If you need more control over the UART, you can manually configure the registers.

In the main, the received bytes containing heading info are displayed.

Demo

Demo video: https://youtu.be/Y0jehv58ugE

https://youtu.be/Y0jehv58ugE

UART Interrupt

UART, as we saw in the last example, can be used in polling mode but it is wise to use it in interrupt

mode. This feature becomes especially important and therefore, a must-have requirement when it

come to that fact that the host micro may not always know when to receive data. Unlike SPI/I2C, UART

doesn’t always follow known data transactions. Take the example of a GSM modem. We and so does

our tiny host N76E003 micro don’t know for sure when a message would arrive. Thus, when an

interrupt due to reception is triggered, it is known to mark the beginning of data reception process.

The host micro can relax idle until data is received fully.

Here, we will see how to use UART interrupt to read a LV-Max EZ0 SONAR module.

Code

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "soft_delay.h"
#include "LCD_2_Wire.h"

unsigned char received = 0;
unsigned char count = 0;
unsigned char buffer[5] = {0x00, 0x00, 0x00, 0x00, 0x00};

void setup(void);

void UART0_ISR(void)
interrupt 4
{
 if(RI == 1)
 {
 buffer[count] = SBUF;
 count++;

 if(count >= 4)
 {
 clr_ES;
 received = 1;
 }

 clr_RI;
 }

 P15 = ~P15;
}

void main(void)
{
 unsigned char i = 0;

 setup();

 while(1)
 {
 Send_Data_To_UART0('S');
 delay_ms(40);
 set_ES;

 if(received)
 {

 for(i = 1; i < 4; i++)
 {
 LCD_goto((12 + i), 1);
 LCD_putchar(buffer[i]);
 }

 count = 0;
 received = 0;
 set_ES;
 }

 delay_ms(40);
 }
}

void setup(void)
{
 P15_PushPull_Mode;

 LCD_init();
 LCD_clear_home();

 LCD_goto(1, 0);
 LCD_putstr("UART Interrupt");
 LCD_goto(0, 1);
 LCD_putstr("Range/Inch:");

 InitialUART0_Timer3(9600);
 set_EA;
}

Schematic

*Note the LV-Max EZ0 SONAR sensor is not directly connected with the N76E003 as shown in the schematic but rather it is

connected via a 74HC04 hex inverter. Two of these inverters are used – one for the TX side and the other for the RX side.

Explanation

This time UART0 is used and is setup using BSP built-in function. The only exception is the interrupt

part. The global interrupt is enabled but not the UART interrupt.

InitialUART0_Timer3(9600);
set_EA;

The UART interrupt is only enabled after commanding the SONAR sensor:

Send_Data_To_UART0('S');
delay_ms(40);
set_ES;

This is done to avoid unnecessary reads.

The sensor is read inside the interrupt routine. The sensor outputs data as Rxxx<CR>. So, there are 5

bytes to read. The “R” in the readout works as a preamble or sync byte. The “xxx” part contains range

info in inches. Finally, <CR> is a carriage return character. Therefore, every time a character is received

an interrupt is triggered and the character is saved in an array. When all 5 bytes have been received,

the display is updated. On exiting the interrupt, the interrupt flag is cleared. P15 is also toggled to

visually indicate that an UART interrupt has been triggered.

void UART0_ISR(void)
interrupt 4
{
 if(RI == 1)
 {
 buffer[count] = SBUF;
 count++;

 if(count >= 4)
 {
 clr_ES;
 received = 1;
 }

 clr_RI;
 }

 P15 = ~P15;
}

Demo

Demo video: https://youtu.be/SCsPt88HFVk

https://youtu.be/SCsPt88HFVk

Inter-Integrated Circuit (I2C) – Interfacing DS1307 I2C RTC

Developed by Philips nearly three decades ago, I2C communication (Inter-Integrated Circuit) is widely

used in a number of devices and is comparatively easier than SPI. For I2C communication only two

wires – serial data (SDA) and serial clock (SCK) are needed and these two wires form a bus in which

we can connect up to 127 devices.

Everything you need to know about I2C can be found in these pages:

• https://learn.mikroe.com/i2c-everything-need-know

• https://learn.sparkfun.com/tutorials/i2c

• http://www.ti.com/lsds/ti/interface/i2c-overview.page

• http://www.robot-electronics.co.uk/i2c-tutorial

• https://www.i2c-bus.org/i2c-bus

• http://i2c.info

Apart from these N76E003’s datasheet explains I2C communication in high detail.

Code

I2C.h

#define regular_I2C_pins 0
#define alternate_I2C_pins 1

#define regular_I2C_GPIOs() do{P13_OpenDrain_Mode;
P14_OpenDrain_Mode; clr_I2CPX;}while(0)

#define alternative_I2C_GPIOs() do{P02_OpenDrain_Mode;
P16_OpenDrain_Mode; set_I2CPX;}while(0)

#define I2C_GPIO_Init(mode) do{if(mode !=
0){alternative_I2C_GPIOs();}else{regular_I2C_GPIOs();}}while(0)

#define I2C_CLOCK 0x27 //Fclk = Fsys / (4*(prescalar + 1))

https://learn.mikroe.com/i2c-everything-need-know
https://learn.sparkfun.com/tutorials/i2c
http://www.ti.com/lsds/ti/interface/i2c-overview.page
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.i2c-bus.org/i2c-bus
http://i2c.info/

#define I2C_ACK 0
#define I2C_NACK 1

#define timeout_count 1000

void I2C_init(void);
void I2C_start(void);
void I2C_stop(void);
unsigned char I2C_read(unsigned char ack_mode);
void I2C_write(unsigned char value);

I2C.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "I2C.h"

void I2C_init(void)
{
 I2C_GPIO_Init(regular_I2C_pins);
 I2CLK = I2C_CLOCK;
 set_I2CEN;
}

void I2C_start(void)
{
 signed int t = timeout_count;

 set_STA;
 clr_SI;
 while((SI == 0) && (t > 0))
 {
 t--;
 };
}

void I2C_stop(void)
{
 signed int t = timeout_count;

 clr_SI;
 set_STO;
 while((STO == 1) && (t > 0))
 {
 t--;
 };
}

unsigned char I2C_read(unsigned char ack_mode)
{

 signed int t = timeout_count;
 unsigned char value = 0x00;

 set_AA;
 clr_SI;
 while((SI == 0) && (t > 0))
 {
 t--;
 };

 value = I2DAT;

 if(ack_mode == I2C_NACK)
 {
 t = timeout_count;
 clr_AA;
 clr_SI;
 while((SI == 0) && (t > 0))
 {
 t--;
 };
 }

 return value;
}

void I2C_write(unsigned char value)
{
 signed int t = timeout_count;

 I2DAT = value;
 clr_STA;
 clr_SI;
 while((SI == 0) && (t > 0))
 {
 t--;
 };
}

DS1307.h

#define I2C_W 0
#define I2C_R 1

#define sec_reg 0x00
#define min_reg 0x01
#define hr_reg 0x02
#define day_reg 0x03
#define date_reg 0x04
#define month_reg 0x05
#define year_reg 0x06
#define control_reg 0x07

#define DS1307_addr 0xD0
#define DS1307_WR (DS1307_addr + I2C_W)

#define DS1307_RD (DS1307_addr + I2C_R)

void DS1307_init(void);
unsigned char DS1307_read(unsigned char address);
void DS1307_write(unsigned char address, unsigned char value);
unsigned char bcd_to_decimal(unsigned char value);
unsigned char decimal_to_bcd(unsigned char value);
void get_time(void);
void set_time(void);

DS1307.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "DS1307.h"
#include "I2C.h"

struct
{
 unsigned char s;
 unsigned char m;
 unsigned char h;
 unsigned char dy;
 unsigned char dt;
 unsigned char mt;
 unsigned char yr;
}time;

void DS1307_init(void)
{
 I2C_init();
 DS1307_write(control_reg, 0x00);
}

unsigned char DS1307_read(unsigned char address)
{
 unsigned char value = 0x00;

 I2C_start();
 I2C_write(DS1307_WR);
 I2C_write(address);

 I2C_start();
 I2C_write(DS1307_RD);
 value = I2C_read(I2C_NACK);
 I2C_stop();

 return value;
}

void DS1307_write(unsigned char address, unsigned char value)
{
 I2C_start();
 I2C_write(DS1307_WR);
 I2C_write(address);
 I2C_write(value);
 I2C_stop();
}

unsigned char bcd_to_decimal(unsigned char value)
{
 return ((value & 0x0F) + (((value & 0xF0) >> 0x04) * 0x0A));
}

unsigned char decimal_to_bcd(unsigned char value)
{
 return (((value / 0x0A) << 0x04) & 0xF0) | ((value % 0x0A) & 0x0F);
}

void get_time(void)
{
 time.s = DS1307_read(sec_reg);
 time.s = bcd_to_decimal(time.s);

 time.m = DS1307_read(min_reg);
 time.m = bcd_to_decimal(time.m);

 time.h = DS1307_read(hr_reg);
 time.h = bcd_to_decimal(time.h);

 time.dy = DS1307_read(day_reg);
 time.dy = bcd_to_decimal(time.dy);

 time.dt = DS1307_read(date_reg);
 time.dt = bcd_to_decimal(time.dt);

 time.mt = DS1307_read(month_reg);
 time.mt = bcd_to_decimal(time.mt);

 time.yr = DS1307_read(year_reg);
 time.yr = bcd_to_decimal(time.yr);
}

void set_time(void)
{
 time.s = decimal_to_bcd(time.s);
 DS1307_write(sec_reg, time.s);

 time.m = decimal_to_bcd(time.m);
 DS1307_write(min_reg, time.m);

 time.h = decimal_to_bcd(time.h);
 DS1307_write(hr_reg, time.h);

 time.dy = decimal_to_bcd(time.dy);
 DS1307_write(day_reg, time.dy);

 time.dt = decimal_to_bcd(time.dt);
 DS1307_write(date_reg, time.dt);

 time.mt = decimal_to_bcd(time.mt);
 DS1307_write(month_reg, time.mt);

 time.yr = decimal_to_bcd(time.yr);
 DS1307_write(year_reg, time.yr);
}

main.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "LCD_3_Wire.h"
#include "I2C.h"
#include "DS1307.h"

extern struct
{
 unsigned char s;
 unsigned char m;
 unsigned char h;
 unsigned char dy;
 unsigned char dt;
 unsigned char mt;
 unsigned char yr;
}time;

void show_value(unsigned char x_pos, unsigned char y_pos, unsigned char
value);
void display_time(void);

void main(void)
{
 time.s = 30;
 time.m = 58;
 time.h = 23;

 P15_PushPull_Mode;

 LCD_init();

 LCD_clear_home();

 LCD_goto(0, 0);

 LCD_putstr("N76E003 I2C RTCC");

 DS1307_init();
 set_time();

 while(1)
 {
 get_time();
 display_time();
 };
}

void show_value(unsigned char x_pos, unsigned char y_pos, unsigned char value)
{
 unsigned char chr = 0;

 chr = ((value / 10) + 0x30);
 LCD_goto(x_pos, y_pos);
 LCD_putchar(chr);

 chr = ((value % 10) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(chr);
}

void display_time(void)
{
 P15 ^= 1;
 LCD_goto(6, 1);
 LCD_putchar(' ');
 LCD_goto(9, 1);
 LCD_putchar(' ');
 delay_ms(400);

 show_value(4, 1, time.h);
 show_value(7, 1, time.m);
 show_value(10, 1, time.s);

 LCD_goto(6, 1);
 LCD_putchar(':');
 LCD_goto(9, 1);
 LCD_putchar(':');
 delay_ms(400);
}

Schematic

*Note that the pin naming of the chip in the schematic above is wrong. P13 and P14 are both SDA pins according to this

naming when actually P13 is SCL and P14 is SDA pin.

Explanation

I have coded two files for I2C easy and quick I2C implementation. These are I2C header and source

file. These files describe I2C hardware functionality as well as provide higher level functions under the

hood of which I2C hardware is manipulated. I have only coded these files for master mode only since

barely we would ever need N76E003 slaves. I also didn’t implement interrupt-based I2C functionalities

as this, in my experience, is also not needed in most of the cases.

void I2C_init(void);
void I2C_start(void);
void I2C_stop(void);
unsigned char I2C_read(unsigned char ack_mode);
void I2C_write(unsigned char value);

Using hardware I2C requires us to manipulate the following registers apart from clock and GPIO

settings.

I2C GPIOs must be set as open-drain GPIOs as per I2C standard. I2C clock must be set according to the

devices connected in the bus. Typically, I2C clock speed ranges from 20 – 400kHz. This clock speed is

dependent on system clock speed Fsys. Therefore, before setting I2C clock speed you have to

set/know Fsys. I2C clock is decided by the value of I2CLK register. It is basically a prescalar value in

master mode.

I2C Bus Clock =
𝐹𝑠𝑦𝑠

4(1+𝐼2𝐶𝐿𝐾)

So, if Fsys = 16MHz and I2CLK = 39 (0x27), the I2C bus clock rate is 100kHz.

Note that only in master I2C clock can be setup. In slave mode, the slave(s) synchronizes automatically

with bus clock.

I2CON register is they key register for using I2C. It contains all the flags and condition-makers.

For instance, consider the I2C start condition. In order to make a start condition, we have to set the

STA bit and clear I2C interrupt flag, SI. Since I used polling mode, SI is polled until it is cleared. This

ensures that a start condition has been successfully made. I have also added a software-based timeout

feature should there be an issue with the I2C bus. In N76E003, there is a hardware-based approach

for timeout too. Note that I didn’t care about the I2C status register states as again this is rarely

needed. If you want more grip on the I2C you can follow the BSP examples.

void I2C_start(void)
{
 signed int t = timeout_count;

 set_STA;
 clr_SI;
 while((SI == 0) && (t > 0))
 {
 t--;
 };
}

Finally, the last register that we will need is the I2C data register (I2DAT). It is through it we send and

receive data from I2C bus.

The demo I have shown here is that of a DS1307 I2C-based real time clock. Perhaps this is the simplest

device for learning about and understanding I2C.

Demo

Demo video: https://youtu.be/tsjbRC59m2I

https://youtu.be/tsjbRC59m2I

Serial Peripheral Interface (SPI) – Interfacing MAX7219 and MAX6675

SPI just like I2C is another highly popular form of onboard serial communication. Compared to I2C it

is fast and robust. However, it requires more GPIO pins than other communication forms. These make

it ideal communication interface for TFT displays, OLED displays, flash memories, DACs, etc.

SPI is best realized as a shift register that shifts data in and out with clock pulses. In a SPI bus, there is

always one master device which generates clock and selects slave(s). Master sends commands to

slave(s). Slave(s) responds to commands sent by the master. The number of slaves in a SPI bus is

virtually unlimited. Except the chip selection pin, all SPI devices in a bus can share the same clock and

data pins.

In general, if you wish to know more about SPI bus here are some cool links:

• https://learn.mikroe.com/spi-bus

• https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

• http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf

• http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus

• https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi

• http://www.circuitbasics.com/basics-of-the-spi-communication-protocol

https://learn.mikroe.com/spi-bus
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus
https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi
http://www.circuitbasics.com/basics-of-the-spi-communication-protocol

Code

MAX72xx.h

#define
MAX72xx_SPI_GPIO_init() do{P00_PushPull_Mode;
P10_PushPull_Mode; P11_PushPull_Mode;}while(0)

#define MAX72xx_CS_OUT_HIGH() set_P11
#define MAX72xx_CS_OUT_LOW() clr_P11

#define NOP 0x00
#define DIG0 0x01
#define DIG1 0x02
#define DIG2 0x03
#define DIG3 0x04
#define DIG4 0x05
#define DIG5 0x06
#define DIG6 0x07
#define DIG7 0x08
#define decode_mode_reg 0x09
#define intensity_reg 0x0A
#define scan_limit_reg 0x0B
#define shutdown_reg 0x0C
#define display_test_reg 0x0F

#define shutdown_cmd 0x00
#define run_cmd 0x01

#define no_test_cmd 0x00
#define test_cmd 0x01

#define digit_0_only 0x00
#define digit_0_to_1 0x01
#define digit_0_to_2 0x02
#define digit_0_to_3 0x03
#define digit_0_to_4 0x04
#define digit_0_to_5 0x05
#define digit_0_to_6 0x06
#define digit_0_to_7 0x07

#define No_decode_for_all 0x00
#define Code_B_decode_digit_0 0x01
#define Code_B_decode_digit_0_to_3 0x0F
#define Code_B_decode_for_all 0xFF

void MAX72xx_SPI_HW_Init(unsigned char clk_value);
void MAX72xx_init(void);
void MAX72xx_write(unsigned char address, unsigned char value);

MAX72xx.c

#include "N76E003_IAR.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "MAX72xx.h"

void MAX72xx_SPI_HW_Init(unsigned char clk_value)
{
 switch(clk_value)
 {
 case 1:
 {
 clr_SPR1;
 set_SPR0;
 break;
 }
 case 2:
 {
 set_SPR1;
 clr_SPR0;
 break;
 }
 case 3:
 {
 set_SPR1;
 set_SPR0;
 break;
 }
 default:
 {
 clr_SPR1;
 clr_SPR0;
 break;
 }
 }

 set_DISMODF;
 set_MSTR;
 clr_CPOL;
 clr_CPHA;
 set_SPIEN;
}

void MAX72xx_init(void)
{
 MAX72xx_SPI_GPIO_init();
 MAX72xx_SPI_HW_Init(0);

 MAX72xx_write(shutdown_reg, run_cmd);
 MAX72xx_write(decode_mode_reg, Code_B_decode_digit_0_to_3);
 MAX72xx_write(scan_limit_reg, digit_0_to_3);

 MAX72xx_write(intensity_reg, 0x19);
}

void MAX72xx_write(unsigned char address, unsigned char value)
{
 MAX72xx_CS_OUT_LOW();

 SPDR = address;
 while(!(SPSR & SET_BIT7));
 clr_SPIF;

 SPDR = value;
 while(!(SPSR & SET_BIT7));
 clr_SPIF;

 MAX72xx_CS_OUT_HIGH();
}

MAX6675.h

#define MAX6675_SPI_GPIO_init() do{P01_Input_Mode; P10_PushPull_Mode;
P12_PushPull_Mode;}while(0)

#define MAX6675_CS_OUT_HIGH() set_P12
#define MAX6675_CS_OUT_LOW() clr_P12

#define T_min 0
#define T_max 1024

#define count_max 4096

#define no_of_pulses 16

#define deg_C 0
#define deg_F 1
#define tmp_K 2

#define open_contact 0x04
#define close_contact 0x00

#define scalar_deg_C 0.25
#define scalar_deg_F_1 1.8
#define scalar_deg_F_2 32.0
#define scalar_tmp_K 273.0

#define no_of_samples 16

void MAX6675_SPI_HW_Init(unsigned char clk_value);
void MAX6675_init(void);
unsigned char MAX6675_get_ADC(unsigned int *ADC_data);
float MAX6675_get_T(unsigned int ADC_value, unsigned char T_unit);

MAX6675.c

#include "N76E003_IAR.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "MAX6675.h"

void MAX6675_SPI_HW_Init(unsigned char clk_value)
{
 switch(clk_value)
 {
 case 1:
 {
 clr_SPR1;
 set_SPR0;
 break;
 }
 case 2:
 {
 set_SPR1;
 clr_SPR0;
 break;
 }
 case 3:
 {
 set_SPR1;
 set_SPR0;
 break;
 }
 default:
 {
 clr_SPR1;
 clr_SPR0;
 break;
 }
 }

 set_DISMODF;
 set_MSTR;
 clr_CPOL;
 set_CPHA;
 set_SPIEN;
}

void MAX6675_init(void)
{
 MAX6675_SPI_GPIO_init();
 MAX6675_SPI_HW_Init(0);
}

unsigned char MAX6675_get_ADC(unsigned int *ADC_data)

{
 unsigned char lb = 0;
 unsigned char hb = 0;
 unsigned char samples = no_of_samples;
 unsigned int temp_data = 0;
 unsigned long avg_value = 0;

 while(samples > 0)
 {
 MAX6675_CS_OUT_LOW();

 SPDR = 0x00;
 while(!(SPSR & SET_BIT7));
 hb = SPDR;
 clr_SPIF;

 SPDR = 0x00;
 while(!(SPSR & SET_BIT7));
 lb = SPDR;
 clr_SPIF;

 MAX6675_CS_OUT_HIGH();

 temp_data = hb;
 temp_data <<= 8;
 temp_data |= lb;
 temp_data &= 0x7FFF;

 avg_value += (unsigned long)temp_data;

 samples--;
 Timer0_Delay1ms(10);
 };

 temp_data = (avg_value >> 4);

 if((temp_data & 0x04) == close_contact)
 {
 *ADC_data = (temp_data >> 3);
 return close_contact;
 }
 else
 {
 *ADC_data = (count_max + 1);
 return open_contact;
 }
}

float MAX6675_get_T(unsigned int ADC_value, unsigned char T_unit)
{
 float tmp = 0.0;

 tmp = (((float)ADC_value) * scalar_deg_C);

 switch(T_unit)
 {
 case deg_F:
 {
 tmp *= scalar_deg_F_1;
 tmp += scalar_deg_F_2;
 break;
 }
 case tmp_K:
 {
 tmp += scalar_tmp_K;
 break;
 }
 default:
 {
 break;
 }
 }

 return tmp;
}

main.c

#include "N76E003_IAR.h"
#include "Common.h"
#include "Delay.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "soft_delay.h"
#include "MAX72xx.h"
#include "MAX6675.h"

void main(void)
{
 unsigned int ti = 0;
 unsigned int t = 0;

 P15_PushPull_Mode;
 MAX6675_init();
 MAX72xx_init();

 while(1)
 {
 P15 = 1;
 clr_CPOL;
 set_CPHA;
 MAX6675_get_ADC(&ti);
 t = ((unsigned int)MAX6675_get_T(ti, tmp_K));
 delay_ms(100);

 P15 = 0;
 clr_CPOL;
 clr_CPHA;
 MAX72xx_write(DIG3, ((t / 1000) % 10));

 MAX72xx_write(DIG2, ((t / 100) % 10));
 MAX72xx_write(DIG1, ((t / 10) % 10));
 MAX72xx_write(DIG0, (t % 10));
 delay_ms(100);
 };
}

Schematic

Explanation

With SPI we have to deal with two things – first, the initialization and second, the data transfer process.

Configuring SPI needs a few things to be set up. These are:

• SPI communication bus speed or simply clock speed

• Clock polarity

• Clock phase

• Orientation of data, i.e. MSB first or LSB first

• Master/slave status

• Optionally hardware slave selection pin use

Most of these can be done by manipulating the following registers:

SPCR configures the hardware SPI peripheral of N76E003 while SPDR is used for transferring data.

To aid in all these I have coded the following functions. Though I didn’t use these code snippets in the

actual demo code for demonstration purposes, these will most certainly work and reduce coding

effort.

void SPI_init(unsigned char clk_speed, unsigned char mode)
{
 set_SPI_clock_rate(clk_speed);
 set_SPI_mode(mode);
 set_DISMODF;
 set_MSTR;
 set_SPIEN;
}

unsigned char SPI_transfer(unsigned char write_value)
{
 signed int t = timeout_count;
 register unsigned char read_value = 0x00;

 SPDR = write_value;
 while((!(SPSR & SET_BIT7)) && (t > 0))
 {
 t--;
 };
 read_value = SPDR;
 clr_SPIF;

 return read_value;
}

SPI_init function sets up the SPI peripheral using two information – the bus clock speed and SPI data

transfer mode. It initializes the SPI hardware as a SPI master device and without hardware salve

selection pin. This configuration is mostly used in common interfacings. Only mode and clock speed

are the variables. In the demo, it is visible that MAX7219 and MAX6675 work with different SPI modes.

I also didn’t use the hardware slave selection because there are two devices and one slave pin.

Certainly, both external devices are not driven at the same time although both share the same bus

lines.

SPI_transfer reads and writes on the SPI bus. Here the master writes to the slave first, waits for

successful transmission and reads from the slave later. It is best realized by the following figure:

To demo SPI, MAX6675 and MAX7219 were used because one lacked read feature while the other

lacked write feature. In the demo, MAX6675 is read to measure the temperature sensed by the K-type

thermocouple attached with it and display the measured temperature in Kelvin on MAX7219-based

seven segment display arrays.

Demo

Demo video: https://youtu.be/0E-nOCFYh54

https://youtu.be/0E-nOCFYh54

One Wire (OW) Communication – Interfacing DHT11

One protocol is not a standard protocol like I2C or SPI. It is just a mere method of communicating with

a device that uses just one wire. There are a few devices that uses such principle for communication.

DHT series sensors, DS18B20s, digital serial number chips, etc. are a few to mention. As I stated before,

since one wire communication doesn’t belong to a dedicated format of communication, there is no

dedicated hardware for it. With just a bidirectional GPIO pin we can implement one wire

communication. Optionally we can also use a timer for measuring response pulse widths since the

method of sending ones and zeroes over one wire requires the measurement of pulse durations. This

way of encoding ones and zeros as a function of pulse width is called time-slotting.

Shown above is the timing diagram for DHT11’s time slots. Check the length of pulse high time for one

and zero. This is the technique applied in time-slotting mechanism. We have to time pulse lengths in

order to identify the logic states.

Code

DHT11.h

#define HIGH 1
#define LOW 0

#define DHT11_pin_init() P05_Quasi_Mode

#define DHT11_pin_HIGH() set_P05
#define DHT11_pin_LOW() clr_P05

#define DHT11_pin_IN() P05

void DHT11_init(void);
unsigned char get_byte(void);
unsigned char get_data(void);

DHT11.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"

#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "DHT11.h"

extern unsigned char values[5];

void DHT11_init(void)
{
 DHT11_pin_init();
 delay_ms(1000);
}

unsigned char get_byte(void)
{
 unsigned char s = 0;
 unsigned char value = 0;

 for(s = 0; s < 8; s++)
 {
 value <<= 1;
 while(DHT11_pin_IN() == LOW);
 delay_us(30);

 if(DHT11_pin_IN() == HIGH)
 {
 value |= 1;
 }

 while(DHT11_pin_IN() == HIGH);
 }
 return value;
}

unsigned char get_data(void)
{
 short chk = 0;
 unsigned char s = 0;
 unsigned char check_sum = 0;

 DHT11_pin_HIGH();
 DHT11_pin_LOW();
 delay_ms(18);
 DHT11_pin_HIGH();
 delay_us(26);

 chk = DHT11_pin_IN();

 if(chk)
 {
 return 1;
 }

 delay_us(80);

 chk = DHT11_pin_IN();

 if(!chk)
 {
 return 2;
 }
 delay_us(80);

 for(s = 0; s <= 4; s += 1)
 {
 values[s] = get_byte();
 }

 DHT11_pin_HIGH();

 for(s = 0; s < 4; s += 1)
 {
 check_sum += values[s];
 }

 if(check_sum != values[4])
 {
 return 3;
 }
 else
 {
 return 0;
 }
}

main.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "LCD_2_Wire.h"
#include "DHT11.h"

unsigned char values[5];

const unsigned char symbol[8] =
{
 0x00, 0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00
};

void setup(void);
void lcd_symbol(void);
void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned char value);

void main(void)
{
 unsigned char state = 0;

 setup();

 while(1)
 {
 state = get_data();

 switch(state)
 {
 case 1:
 {
 }
 case 2:
 {
 LCD_clear_home();
 LCD_putstr("No Sensor Found!");
 break;
 }
 case 3:
 {
 LCD_clear_home();
 LCD_putstr("Checksum Error!");
 break;
 }
 default:
 {
 LCD_goto(0, 0);
 LCD_putstr("R.H/ %: ");

 lcd_print(14, 0, values[0]);

 LCD_goto(0, 1);
 LCD_putstr("Tmp/");
 LCD_goto(4, 1);
 LCD_send(0, DAT);
 LCD_goto(5, 1);
 LCD_putstr("C:");

 if((values[2] & 0x80) == 1)
 {
 LCD_goto(13, 1);
 LCD_putstr("-");
 }
 else
 {
 LCD_goto(13, 1);
 LCD_putstr(" ");
 }

 lcd_print(14, 1, values[2]);
 break;

 }
 }

 delay_ms(1000);
 };
}

void setup(void)
{
 DHT11_init();

 LCD_init();
 LCD_clear_home();
 lcd_symbol();
}

void lcd_symbol(void)
{
 unsigned char s = 0;

 LCD_send(0x40, CMD);

 for(s = 0; s < 8; s++)
 {
 LCD_send(symbol[s], DAT);
 }

 LCD_send(0x80, CMD);
}

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned char value)
{
 unsigned char chr = 0x00;

 chr = ((value / 10) + 0x30);
 LCD_goto(x_pos, y_pos);
 LCD_putchar(chr);

 chr = ((value % 10) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(chr);
}

Schematic

Explanation

As stated earlier, OW basically needs two things – first, the control of a single GPIO pin and second,

the measurement of time. I would like to highlight the most important part of the whole code here:

unsigned char get_byte(void)
{
 unsigned char s = 0;
 unsigned char value = 0;

 for(s = 0; s < 8; s++)
 {
 value <<= 1;
 while(DHT11_pin_IN() == LOW);
 delay_us(30);

 if(DHT11_pin_IN() == HIGH)
 {
 value |= 1;
 }

 while(DHT11_pin_IN() == HIGH);
 }
 return value;
}

From DHT11’s timing diagram, we know that a zero is define by a pulse of 26 - 28μs and a logic one is

defined by a pulse of 70μs. It is here in the get_byte function we check the pulse coming from DHT11.

The DHT11’s pin is polled as an input and after 30μs if the result of this polling is high then it is

considered as a logic one or else it is considered otherwise. Once triggered, DHT11 will provide a 5-

byte output. All of the bits in these 5 bytes are checked this way. Though it is not the best method to

do so, it is easy and simple.

Demo

Demo video: https://youtu.be/1Zetmad3fLU

https://youtu.be/1Zetmad3fLU

One Wire (OW) Communication – Interfacing DS18B20

One wire communication, as stated previously, doesn’t have a defined protocol. Except for the time-

slotting mechanism part, there is nothing in common across the devices using this form of

communication. We have seen how to interface a DHT11 relative humidity and temperature sensor

previously. In this segment, we will see how to interface a DS18B20 one-wire digital temperature

sensor with N76E003. DS18B20 follows and uses a completely different set of rules for

communication.

Code

one_wire.h

#define DS18B20_GPIO_init() P06_OpenDrain_Mode

#define DS18B20_IN() P06

#define DS18B20_OUT_LOW() clr_P06
#define DS18B20_OUT_HIGH() set_P06

#define TRUE 1
#define FALSE 0

unsigned char onewire_reset(void);
void onewire_write_bit(unsigned char bit_value);
unsigned char onewire_read_bit(void);
void onewire_write(unsigned char value);
unsigned char onewire_read(void);

one_wire.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "one_wire.h"

unsigned char onewire_reset(void)
{
 unsigned char res = FALSE;

 DS18B20_GPIO_init();

 DS18B20_OUT_LOW();
 delay_us(480);
 DS18B20_OUT_HIGH();
 delay_us(60);

 res = DS18B20_IN();

 delay_us(480);

 return res;
}

void onewire_write_bit(unsigned char bit_value)
{
 DS18B20_OUT_LOW();

 if(bit_value)
 {
 delay_us(104);
 DS18B20_OUT_HIGH();
 }
}

unsigned char onewire_read_bit(void)
{
 DS18B20_OUT_LOW();
 DS18B20_OUT_HIGH();
 delay_us(15);

 return(DS18B20_IN());
}

void onewire_write(unsigned char value)
{
 unsigned char s = 0;

 while(s < 8)
 {
 if((value & (1 << s)))
 {
 DS18B20_OUT_LOW();
 nop;
 DS18B20_OUT_HIGH();
 delay_us(60);
 }

 else
 {
 DS18B20_OUT_LOW();
 delay_us(60);
 DS18B20_OUT_HIGH();
 nop;
 }

 s++;
 }
}

unsigned char onewire_read(void)

{
 unsigned char s = 0x00;
 unsigned char value = 0x00;

 while(s < 8)
 {
 DS18B20_OUT_LOW();
 nop;
 DS18B20_OUT_HIGH();

 if(DS18B20_IN())
 {
 value |= (1 << s);
 }

 delay_us(60);

 s++;
 }

 return value;
}

DS18B20.h

#include "one_wire.h"

#define convert_T 0x44
#define read_scratchpad 0xBE
#define write_scratchpad 0x4E
#define copy_scratchpad 0x48
#define recall_E2 0xB8
#define read_power_supply 0xB4
#define skip_ROM 0xCC

#define resolution 12

void DS18B20_init(void);
float DS18B20_get_temperature(void);

DS18B20.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "DS18B20.h"

void DS18B20_init(void)
{

 onewire_reset();
 delay_ms(100);
}

float DS18B20_get_temperature(void)
{
 unsigned char msb = 0x00;
 unsigned char lsb = 0x00;
 register float temp = 0.0;

 onewire_reset();
 onewire_write(skip_ROM);
 onewire_write(convert_T);

 switch(resolution)
 {
 case 12:
 {
 delay_ms(750);
 break;
 }
 case 11:
 {
 delay_ms(375);
 break;
 }
 case 10:
 {
 delay_ms(188);
 break;
 }
 case 9:
 {
 delay_ms(94);
 break;
 }
 }

 onewire_reset();

 onewire_write(skip_ROM);
 onewire_write(read_scratchpad);

 lsb = onewire_read();
 msb = onewire_read();

 temp = msb;
 temp *= 256.0;
 temp += lsb;

 switch(resolution)
 {
 case 12:
 {

 temp *= 0.0625;
 break;
 }
 case 11:
 {
 temp *= 0.125;
 break;
 }
 case 10:
 {
 temp *= 0.25;
 break;
 }
 case 9:
 {
 temp *= 0.5;
 break;
 }
 }

 delay_ms(40);

 return (temp);
}

main.c

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "DS18B20.h"
#include "LCD_3_Wire.h"

const unsigned char symbol[8] =
{
 0x00, 0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00
};

void lcd_symbol(void);
void print_C(unsigned char x_pos, unsigned char y_pos, signed int value);
void print_I(unsigned char x_pos, unsigned char y_pos, signed long value);
void print_D(unsigned char x_pos, unsigned char y_pos, signed int value,
unsigned char points);
void print_F(unsigned char x_pos, unsigned char y_pos, float value, unsigned
char points);

void main(void)
{
 float t = 0.0;

 DS18B20_init();
 LCD_init();
 lcd_symbol();

 LCD_goto(0, 0);
 LCD_putstr("N76E003 DS18B20");

 LCD_goto(0, 1);
 LCD_putstr("T/ C");
 LCD_goto(2, 1);
 LCD_send(0, DAT);

 while(1)
 {
 t = DS18B20_get_temperature();
 print_F(9, 1, t, 3);
 delay_ms(100);
 };
}

void lcd_symbol(void)
{
 unsigned char s = 0;

 LCD_send(0x40, CMD);

 for(s = 0; s < 8; s++)
 {
 LCD_send(symbol[s], DAT);
 }

 LCD_send(0x80, CMD);
}

void print_C(unsigned char x_pos, unsigned char y_pos, signed int value)
{
 char ch[5] = {0x20, 0x20, 0x20, 0x20, '\0'};

 if(value < 0x00)
 {
 ch[0] = 0x2D;
 value = -value;
 }
 else
 {
 ch[0] = 0x20;
 }

 if((value > 99) && (value <= 999))
 {
 ch[1] = ((value / 100) + 0x30);
 ch[2] = (((value % 100) / 10) + 0x30);
 ch[3] = ((value % 10) + 0x30);
 }

 else if((value > 9) && (value <= 99))
 {
 ch[1] = (((value % 100) / 10) + 0x30);
 ch[2] = ((value % 10) + 0x30);
 ch[3] = 0x20;
 }
 else if((value >= 0) && (value <= 9))
 {
 ch[1] = ((value % 10) + 0x30);
 ch[2] = 0x20;
 ch[3] = 0x20;
 }

 LCD_goto(x_pos, y_pos);
 LCD_putstr(ch);
}

void print_I(unsigned char x_pos, unsigned char y_pos, signed long value)
{
 char ch[7] = {0x20, 0x20, 0x20, 0x20, 0x20, 0x20, '\0'};

 if(value < 0)
 {
 ch[0] = 0x2D;
 value = -value;
 }
 else
 {
 ch[0] = 0x20;
 }

 if(value > 9999)
 {
 ch[1] = ((value / 10000) + 0x30);
 ch[2] = (((value % 10000)/ 1000) + 0x30);
 ch[3] = (((value % 1000) / 100) + 0x30);
 ch[4] = (((value % 100) / 10) + 0x30);
 ch[5] = ((value % 10) + 0x30);
 }

 else if((value > 999) && (value <= 9999))
 {
 ch[1] = (((value % 10000)/ 1000) + 0x30);
 ch[2] = (((value % 1000) / 100) + 0x30);
 ch[3] = (((value % 100) / 10) + 0x30);
 ch[4] = ((value % 10) + 0x30);
 ch[5] = 0x20;
 }
 else if((value > 99) && (value <= 999))
 {
 ch[1] = (((value % 1000) / 100) + 0x30);
 ch[2] = (((value % 100) / 10) + 0x30);
 ch[3] = ((value % 10) + 0x30);
 ch[4] = 0x20;
 ch[5] = 0x20;

 }
 else if((value > 9) && (value <= 99))
 {
 ch[1] = (((value % 100) / 10) + 0x30);
 ch[2] = ((value % 10) + 0x30);
 ch[3] = 0x20;
 ch[4] = 0x20;
 ch[5] = 0x20;
 }
 else
 {
 ch[1] = ((value % 10) + 0x30);
 ch[2] = 0x20;
 ch[3] = 0x20;
 ch[4] = 0x20;
 ch[5] = 0x20;
 }

 LCD_goto(x_pos, y_pos);
 LCD_putstr(ch);
}

void print_D(unsigned char x_pos, unsigned char y_pos, signed int value,
unsigned char points)
{
 char ch[5] = {0x2E, 0x20, 0x20, '\0'};

 ch[1] = ((value / 100) + 0x30);

 if(points > 1)
 {
 ch[2] = (((value / 10) % 10) + 0x30);

 if(points > 1)
 {
 ch[3] = ((value % 10) + 0x30);
 }
 }

 LCD_goto(x_pos, y_pos);
 LCD_putstr(ch);
}

void print_F(unsigned char x_pos, unsigned char y_pos, float value, unsigned
char points)
{
 signed long tmp = 0x0000;

 tmp = value;
 print_I(x_pos, y_pos, tmp);
 tmp = ((value - tmp) * 1000);

 if(tmp < 0)
 {

 tmp = -tmp;
 }

 if(value < 0)
 {
 value = -value;
 LCD_goto(x_pos, y_pos);
 LCD_putchar(0x2D);
 }
 else
 {
 LCD_goto(x_pos, y_pos);
 LCD_putchar(0x20);
 }

 if((value >= 10000) && (value < 100000))
 {
 print_D((x_pos + 6), y_pos, tmp, points);
 }
 else if((value >= 1000) && (value < 10000))
 {
 print_D((x_pos + 5), y_pos, tmp, points);
 }
 else if((value >= 100) && (value < 1000))
 {
 print_D((x_pos + 4), y_pos, tmp, points);
 }
 else if((value >= 10) && (value < 100))
 {
 print_D((x_pos + 3), y_pos, tmp, points);
 }
 else if(value < 10)
 {
 print_D((x_pos + 2), y_pos, tmp, points);
 }
}

Schematic

Explanation

One wire communication is detailed in these application notes from Maxim:

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

https://www.maximintegrated.com/en/app-notes/index.mvp/id/162

These notes are all that are needed for implementing the one wire communication interface for

DS18B20. Please go through these notes. The codes are self-explanatory and are implemented from

the code examples in these app notes.

Demo

Demo video: https://youtu.be/uOq7etfuqvg

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162
https://youtu.be/uOq7etfuqvg

Decoding NEC IR Remote Protocol

IR remote controllers are used in a number of devices for remotely controlling them. Examples of

these devices include TV, stereo, smart switches, projectors, etc. IR communication as such is

unidirectional and in a way one wire communication. Ideally there is one transmitter and one receiver

only.

Data to be sent from a remote transmitter is sent by modulating it with a carrier wave (usually

between 36kHz to 40kHz). Modulation ensure safety from data corruption and long-distance

transmission. An IR receiver at the receiving end receives and demodulates the sent out modulated

data and outputs a stream of pulses. These pulses which vary in pulse widths/timing/position/phase

carry the data information that was originally sent by the remote transmitter. How the pulses should

behave is governed closely by a protocol or defined set of rules. In most micros, there is no dedicated

hardware for decoding IR remote protocols. A micro that needs to decode IR remote data also doesn’t

know when it will be receiving an IR data stream. Thus, a combination of external interrupt and timer

is needed for decoding IR data.

In this segment, we will see how we can use an external interrupt and a timer to easily decode a NEC

IR remote. This same method can be applied to any IR remote controller. At this stage, I recommend

that you do a study of NEC IR protocol from here. SB-Project’s website is an excellent page for info as

such.

https://www.sbprojects.net/knowledge/ir/nec.php

Code

#include "N76E003.h"
#include "SFR_Macro.h"
#include "Function_define.h"
#include "Common.h"
#include "Delay.h"
#include "soft_delay.h"
#include "LCD_2_Wire.h"

#define sync_high 22000
#define sync_low 14000
#define one_high 3600
#define one_low 2400
#define zero_high 1800
#define zero_low 1200

bit received;
unsigned char bits = 0;
unsigned int frames[33];

void setup(void);
void set_Timer_0(unsigned int value);
unsigned int get_Timer_0(void);
void erase_frames(void);
unsigned char decode(unsigned char start_pos, unsigned char end_pos);
void decode_NEC(unsigned char *addr, unsigned char *cmd);
void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned char value);

void EXTI0_ISR(void)
interrupt 0
{
 frames[bits] = get_Timer_0();
 bits++;
 set_TR0;

 if(bits >= 33)
 {
 received = 1;
 clr_EA;
 clr_TR0;
 }
 set_Timer_0(0x0000);
 P15 = ~P15;
}

void main(void)
{
 unsigned char address = 0x00;
 unsigned char command = 0x00;

 setup();

 while(1)
 {
 if(received)
 {
 decode_NEC(&address, &command);
 lcd_print(13, 0, address);
 lcd_print(13, 1, command);
 delay_ms(100);
 erase_frames();
 set_EA;
 }
 };
}

void setup(void)
{
 erase_frames();
 P15_PushPull_Mode;
 TIMER0_MODE1_ENABLE;
 set_Timer_0(0x0000);
 set_IT0;
 set_EX0;
 set_EA;

 LCD_init();
 LCD_clear_home();
 LCD_goto(0, 0);
 LCD_putstr("Address:");
 LCD_goto(0, 1);
 LCD_putstr("Command:");
}

void set_Timer_0(unsigned int value)
{
 TH0 = ((value && 0xFF00) >> 8);
 TL0 = (value & 0x00FF);
}

unsigned int get_Timer_0(void)
{
 unsigned int value = 0x0000;

 value = TH0;
 value <<= 8;
 value |= TL0;

 return value;
}

void erase_frames(void)

{
 for(bits = 0; bits < 33; bits++)
 {
 frames[bits] = 0x0000;
 }

 set_Timer_0(0x0000);
 received = 0;
 bits = 0;
}

unsigned char decode(unsigned char start_pos, unsigned char end_pos)
{
 unsigned char value = 0;

 for(bits = start_pos; bits <= end_pos; bits++)
 {
 value <<= 1;

 if((frames[bits] >= one_low) && (frames[bits] <= one_high))
 {
 value |= 1;
 }

 else if((frames[bits] >= zero_low) && (frames[bits] <= zero_high))
 {
 value |= 0;
 }

 else if((frames[bits] >= sync_low) && (frames[bits] <= sync_high))
 {
 return 0xFF;
 }
 }

 return value;
}

void decode_NEC(unsigned char *addr, unsigned char *cmd)
{
 *addr = decode(2, 9);
 *cmd = decode(18, 25);
}

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned char value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 100) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar(((value % 10) / 10) + 0x30);
 LCD_goto((x_pos + 2), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

Schematic

Explanation

A NEC transmission sends out 33 pulses. The first one is a sync bit and the rest 32 contain address and

command info. These 32 address and command bits can be divided into 4 groups – address, command,

inverted address and inverted command. The first 16 bits contain address and inverted address while

the rest contain command and inverted command. The inverted signals can be used against the non-

inverted ones for checking signal integrity.

We already know that IR data is received as a steam of pulses. Pulses represent sync bit or other info,

ones and zeros. In case of NEC IR protocol, the pulses have variable lengths. Sync bit represented by a

pulse of 9ms high and 4.5ms low – total pulse time is 13.5ms. Check the timing diagram below. Please

note that in this timing diagram the blue pulses are from the transmitter’s output and the yellow ones

are those received by the receiver. Clearly the pulses are inverted.

Logic one is represented by a pulse of 560µs high time and 2.25ms of low time – total pulse time is

2.81ms. Likewise, logic zero is represented by a pulse of 560µs high time and 1.12ms of low time –

total pulse time is 1.68ms.

These timings can vary slightly about 15 - 25% due to a number of factors like medium, temperature,

etc. Therefore, we can assume the following timings:

Signal
Ideal Pulse Length

(ms)
Maximum Pulse Length

(ms)
Minimum Pulse

Length (ms)

Sync 13.5 16 10

High 2.81 3.3 2.2

Low 1.68 2 1.3

Now as per timing info and timing diagram we have to detect falling edges and time how long it takes

to detect another falling edge. In this way, we can time the received pulses and use the pulse time

info to decode a received signal.

In the demo, I used external interrupt channel EXTI0 and Timer 0. The system clock frequency is set to

16MHz with HIRC. Timer 0 is set in Mode 1 and its counter is rest to 0 count. EXTI0 is set to detect

falling edges. Note that the timer is set but not started.

TIMER0_MODE1_ENABLE;
set_Timer_0(0x0000);
set_IT0;
set_EX0;
set_EA;

Also note that each tick of Timer 0 here is about:

Timer Tick =
𝑇𝑖𝑚𝑒𝑟 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟

𝐹𝑠𝑦𝑠
 =

12

16 𝑀𝐻𝑧
 = 0.75µs

Based on this tick info, we can deduce the maximum and minimum pulse durations as like:

#define sync_high 22000 // 22000 × 0.75ms = 16.5ms
#define sync_low 14000 // 14000 × 0.75ms = 10.5ms
#define one_high 3600 // 3600 × 0.75ms = 2.7ms
#define one_low 2400 // 2400 × 0.75ms = 1.8ms

#define zero_high 1800 // 1800 × 0.75ms = 1.35ms
#define zero_low 1200 // 1200 × 0.75ms = 0.9ms

Now when an IR transmission is received, an interrupt will be triggered. Therefore, in the ISR, we

immediately capture the timer’s tick count and reset it. When all 33 pulses have been received this

way, we temporarily halt all interrupts by disabling the global interrupt and stop the timer in order to

decode the received signal. P15 is also toggled to demonstrate reception.

void EXTI0_ISR(void)
interrupt 0
{
 frames[bits] = get_Timer_0();
 bits++;
 set_TR0;

 if(bits >= 33)
 {
 received = 1;
 clr_EA;
 clr_TR0;
 }
 set_Timer_0(0x0000);
 P15 = ~P15;
}

Now the signal is decoded in the decode function. This function scans a fixed length of time frames for

sync, ones and zeros and return the value obtained by scanning the time info of the pulses. In this

way, a received signal is decoded.

unsigned char decode(unsigned char start_pos, unsigned char end_pos)
{
 unsigned char value = 0;

 for(bits = start_pos; bits <= end_pos; bits++)
 {
 value <<= 1;

 if((frames[bits] >= one_low) && (frames[bits] <= one_high))
 {
 value |= 1;
 }

 else if((frames[bits] >= zero_low) && (frames[bits] <= zero_high))
 {
 value |= 0;
 }

 else if((frames[bits] >= sync_low) && (frames[bits] <= sync_high))
 {
 return 0xFF;
 }
 }

 return value;

}

In the main loop, the decode info are displayed on a text LCD.

Demo

Demo video: https://youtu.be/9xFYY9zVkFQ

Epilogue

After going through all these topics and exploring the N76E003 to the finest details, I have to say that

just like flagship killer cell phones, this is a flagship killer 8-bit microcontroller. In terms of price vs

https://youtu.be/9xFYY9zVkFQ

feature ratio, it is a winner. I’m truly impressed by its performance and hardware features. It offers

something like an 8051 but with more advanced modern features. Old-school 8051 users will surely

love to play with it.

Every day we talk about software piracy and hacking but little effort is done to prevent them. Students,

hobbyists and low-profile business houses can’t afford to use the expensive Keil/IAR compiler. They

often go for pirated versions of these software and this is a very wrong path to follow. Like I said in

my first post on N76E003, Nuvoton has rooms for making its devices more popular by investing on a

compiler of its own or at least start doing something with free Eclipse-IDE.

All files and code examples related to Keil compiler can be downloaded from here.

All files and code examples related to IAR compiler can be downloaded from here.

Youtube playlist.

Happy coding.

Author: Shawon M. Shahryiar
https://www.youtube.com/user/sshahryiar
https://www.facebook.com/groups/microarena
https://www.facebook.com/MicroArena 06.08.2018

https://drive.google.com/open?id=1rLNJWHODC2I4-iQGLyWpdU47Md1WZ0aP
https://drive.google.com/open?id=14I3QgGq_KVMD2FVax4jNRXkTau_1jgPn
https://www.youtube.com/watch?v=xZ5gkk6WQpw&list=PL-EErZRpDPIXmXL_Oo9v1j2PD8scq3VkW
https://www.youtube.com/user/sshahryiar
https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

	N76E003 vs STM8S003
	Hardware Tools
	Software Tools
	How to get started?
	Nuvoton Files
	About the N76E006 Test Board
	Coding Nuvoton N76E003
	General Purpose Input-Output (GPIO)
	Code
	Schematic
	Explanation
	Demo

	Driving 2x16 LCD
	Code
	lcd.h
	lcd.c
	main.c

	Schematic
	Explanation
	Demo

	Driving 2x16 LCD with Software SPI
	Code
	LCD_3_Wire.h
	LCD_3_Wire.c
	main.c

	Schematic
	Explanation
	Demo

	Driving 2x16 LCD with Software I2C
	Code
	SW_I2C.h
	SW_I2C.c
	PCF8574.h
	PCF8574.c
	LCD_2_Wire.h
	LCD_2_Wire.c
	main.c

	Schematic
	Explanation
	Demo

	Driving seven Segments by Bit-banging TM1640
	Code
	fonts.h
	TM1640.h
	TM1640.c
	main.c

	Schematic
	Explanation
	Demo

	External Interrupt (EXTI)
	Code
	Schematic
	Explanation
	Demo

	Pin Interrupt – Interfacing Rotary Encoder
	Code
	Schematic
	Explanation
	Demo

	Clock System
	Code
	Schematic
	Explanation
	Demo

	12-Bit ADC – LM35 Thermometer
	Code
	Schematic
	Explanation
	Demo

	ADC Interrupt – LDR-based Light Sensor
	Code
	Schematic
	Explanation
	Demo

	ADC Comparator
	Code
	Schematic
	Explanation
	Demo

	Data Flash – Using APROM as EEPROM
	Code
	Flash.h
	Flash.c
	main.c

	Schematic
	Explanation
	Demo

	Overview of N76E003 Timers
	Timer 0 – Time base Generation
	Code
	Schematic
	Explanation
	Demo

	Timer 1 – Stopwatch
	Code
	Schematic
	Explanation
	Demo

	Timer 2 Input Capture – Frequency Counter
	Code
	Schematic
	Explanation
	Demo

	Timer 2 Pulse Width Capture – Interfacing HC-SR04 SONAR
	Code
	Schematic
	Explanation
	Demo

	Timer 3 – Driving 7 Segments, LED and Scanning Keypad
	Code
	Schematic
	Explanation
	Demo

	Simple PWM – RGB LED Fading
	Code
	Schematic
	Explanation
	Demo

	Complementary PWM with Dead Time
	Code
	Schematic
	Explanation
	Demo

	Wakeup Timer and Power Modes
	Code
	Schematic
	Explanation
	Demo

	Watchdog Timer
	Code
	Schematic
	Explanation
	Demo

	Communication Peripheral Overview
	Serial Communication - UART
	Code
	HMC1022.h
	HMC1022.c
	main.c

	Schematic
	Explanation
	Demo

	UART Interrupt
	Code
	Schematic
	Explanation
	Demo

	Inter-Integrated Circuit (I2C) – Interfacing DS1307 I2C RTC
	Code
	I2C.h
	I2C.c
	DS1307.h
	DS1307.c
	main.c

	Schematic
	Explanation
	Demo

	Serial Peripheral Interface (SPI) – Interfacing MAX7219 and MAX6675
	Code
	MAX72xx.h
	MAX72xx.c
	MAX6675.h
	MAX6675.c
	main.c

	Schematic
	Explanation
	Demo

	One Wire (OW) Communication – Interfacing DHT11
	Code
	DHT11.h
	DHT11.c
	main.c

	Schematic
	Explanation
	Demo

	One Wire (OW) Communication – Interfacing DS18B20
	Code
	one_wire.h
	one_wire.c
	DS18B20.h
	DS18B20.c
	main.c

	Schematic
	Explanation
	Demo

	Decoding NEC IR Remote Protocol
	Code
	Schematic
	Explanation
	Demo

	Epilogue

