
Page | 1

Exploring STC 8051 Microcontrollers

8051 microcontrollers are the first-generation microcontrollers that sparked the modern embedded-

system era and established the basic concepts for almost all microcontrollers. In the early 1980s, 8051

microcontrollers were first introduced by Intel. Later other manufacturers like Philips (NXP), Atmel

(now Microchip), Silicon Labs, Maxim, etc took the 8051 architecture and introduced their variants of

8051s. Today there are hundreds of such companies which still manufactures this old school legendary

micro. of them have even added more features like ADCs, communication peripherals like SPI and I2C,

etc that were not originally integrated. There are even some manufacturers who produce micros

under their naming convention/branding while maintaining the basic architecture. Recently I covered

an article about Nuvoton N76E003 here. It is based on such ideas. STC (not to be confused with

STMicroelectronics) is a Chinese semiconductor manufacturer that operates in the same way as

Nuvoton. STC took the model of 8051 just like other manufacturers and upgraded it to new levels by

implementing some vital upgrades, enhancements and additions. It also manufactures standard 8051s

which are designed to fit in place of any other 8051s from any manufacturer. At present STC has

several different variants of 8051s, ranging from standard 40 pin regular DIP 8051s to tiny 8-pin

variants. Some are shown below.

Documentations and Websites

STC microcontrollers are popular in China and Chinese-speaking countries. Owing to this fact, most of

the documentation and even the websites are in Chinese. It is hard to get English documentations.

Fortunately, we will not be needing anything else other than device datasheet documents which are

luckily available both in Chinese and English.

Unlike other manufacturers who maintain one website dedicated to their products and themselves,

STC maintains several websites. Most are in Chinese. This creates lot of confusion about STC. Some

common STC websites are listed below:

http://www.stcmicro.com

http://www.stcmcu.com

http://www.stcisp.com

http://www.stcmcudata.com

http://embedded-lab.com/blog/category/nuvoton/
https://www.stcmicro.com/
http://www.stcmicro.com/
http://www.stcmcu.com/
http://www.stcisp.com/
http://www.stcmcudata.com/

Page | 2

STC 8051s vs Other 8051s

STC 8051s, as stated, offers additional hardware peripherals when compared to standard 8051s. There

are some STC microcontrollers like STC89C52RC that are same as the standard ones while some others

like STC8A8K64S4A12 are more robust with many advanced features. Some key differences between

standard 8051s and STC micros are discussed below:

• Packages / Sizes

STC offers microcontrollers in various DIP and SMD IC packages. Thus, instead of using a 40-

pin DIP package microcontroller to solve a problem that can be solved with an 8-pin SMD low

cost microcontroller, we can avoid using a big microcontroller and thereby save valuable PCB

space. Most STC 8051s are, by the way, 100% pin-compatible with other 8051s. This feature

makes STC micros easy and viable replacements for devices that use standard 8051s.

• Speed / Operating Frequency

STC microcontrollers are relatively faster than common 8051s as they can operate at higher

clock frequencies. For example, AT89S52 has a maximum operating frequency of 33MHz while

STC89C52RC can be clocked with an 80MHz source.

• Additional Hardware Peripherals

Some STC microcontrollers have in-built ADC, EEPROM, watchdog timer, external interrupt

pins and other peripherals. Some are even equipped with higher storage capacities. These are

not available in typical 8051s.

• Operating Voltage

Most 8051 micros need 4.0 – 5.5V DC supply voltage. Some can operate with 3.3V supplies

too. Same goes for STC micros. However, there are some STC micros that are designed to

operate at yet lower voltage levels. STC offers low power MCUs that operate between 2.0 –

3.6V and general-purpose micros that can operate between 3.6 – 5.5V. The operating voltage

ranges and low power consumption figures of STC micros make them well-suited for battery

and solar-powered devices.

• Programming Interface

Most 8051s require a parallel port programmer while some require serial port programmer or

separate dedicated programmer hardware. STC micros on the other hand can be programmer

with a serial port programmer and so there is no need to buy a dedicated programmer. A

simple USB-TTL serial converter can be used to load codes into STC micros.

• Other Minor Differences

Other areas of differences include added/reduced functionalities/features. In some STC

micros, there additional options for GPIOs, timers, etc while in some other devices these

extras are not observed. For example, in STC89C52RC, there is 13-bit timer mode for timers 0

and 1 but this feature is absent in STC15L204EA. Likewise in STC15L204EA, there are many

ways for setting up GPIOs which are not present in STC89C52RC.

Page | 3

Hardware Tools

From AliExpress, DX, Alibaba and other similar websites/stores, you can buy any STC development

board of your choice. Alternatively, you can buy common STC chips and use them with your existing

development board or setup a bread-board arrangement.

One such board is shown above. These boards have lot of hardware devices like external 24 series

EEPROM, I2C ADC-DAC, communication and display interfaces, etc already embedded and ready for

go. Such boards are, thus easy to use and need less wiring. However, boards as such are relatively

expensive and big than the one shown below:

Page | 4

This board is designed to bridge a serial interface between a host micro and a nRF24L01 2.4GHz

wireless communication module. However, that doesn’t restrict us from using the STC15F(L)204EA

micro embedded in it. If you just want to give STC micros a shot with very little investment then this

sort of board is all that you can ever expect.

In my tutorials, I’ll be using both kinds of boards but the main focus will be towards STC15L204EA or

similar slightly non-standard 8051s since they are not like playing with typical 8051s.

We will also need an USB-serial converter for uploading code.

Apart from these, some regularly used hardware items like LCDs, sensors, wires, etc will be needed.

These can easily be found in any starter kit and most are available in any hobbyist’s collection.

Page | 5

Software Tools

Only two software tools will be needed. The first is Keil C51 compiler and second STC ISP tool.

STC ISP tool can be downloaded from here. This is one helluva tool that has many useful features. It a

programmer interface, a code generator, serial port monitor, code bank and many other stuffs. It sure

does make coding STC micros lot easier than you can possibly imagine.

Keil C51 C compiler will be needed to code STC micros. At present, Keil is the only C compiler that can

be used reliably to code STC micros. STC documentations speak of Keil mostly. If you want to use some

other compiler like IAR Embedded Workbench, MikroC for 8051, etc other than Keil, you have to add

the SFR definitions of your target STC micros and do other stuffs to familiarize it with the STC micro

target. Alternatively, you can use models of other similar 8051 model. For example, STC89C52RC is

similar to AT89S52. You can use codes for such interchangeably. However, this method won’t work in

cases where we have more hardware peripheral than an ordinary 8051 micro. STC15L204EA, for

instance, can’t be used like ordinary 8051 or like STC89/90 series micros.

https://www.stcmicro.com/rjxz.html

Page | 6

Programming STC Microcontrollers

By default, STC microcontroller database is absent in Keil. It is imperative that this database is added

to Keil when using it for STC micros for the very first time. Though this database is not complete in the

sense that not chips are enlisted in it, it is still a must or else we will have to use unconventional coding

methods by using models of similar microcontrollers of different manufacturers. Personally, I hate

unconventional tactics because why use such methods when we can add the database easily. We only

have to add this database once.

First run the STC-ISP tool.

After clicking the STC-ISP tool icon, the application starts and the following window may appear:

Don’t worry. It is not an error or garbage text window. It appears so if you don’t have Chinese font

database installed in your PC and so just click OK to continue. Recent versions of STC-ISP don’t have

this issue.

Page | 7

Once the application starts, navigate to Keil ICE Settings tab and locate the highlighted button as

shown below:

Now just navigate to Keil installation folder and hit OK as shown below:

Selecting wrong folder will end up with an error and the database won’t be installed.

Page | 8

If the database addition is a success, you’ll get the following message:

Now run Keil C51 compiler.

Go to Project >> New µVision Project… as shown below:

Page | 9

Give your project a folder and a name as shown below:

Select STC Database and appropriate chip or similar part number.

Please note that your target chip may not be in the list. For example, the L-series chips are not enlisted

in the database and so they are absent in the list. STC15L204, for example, is not shown in the list. You

can use STC15F204EA instead of it as they are similar stuffs. The only difference is their power

consumptions. You have to use such tricks when your target chip is not listed. Make sure that the

model you selected matches with the target chip or else things may not work properly.

Page | 10

After chip selection, add the startup assembler file to your project.

By default, Keil doesn’t add/create any file and so you’ll see that the project folder has no main source

file. We’ll have to create one main source file and add additional files if needed.

Still we are not ready to start coding. This is because we have not yet added SFR definition header file

and other custom optional files.

Again, we need to take the help of STC-ISP tool.

Page | 11

In STC-ISP tool, locate the Header File tab and select appropriate MCU series.

Save or copy the file to your desired location.

In Keil, go to target options by right click the folder icon and set target options as shown in the

following screenshots:

Page | 12

From this window select clock frequency and memory model.

Select Create HEX File from this window as this file will be uploaded in the target chip.

Page | 13

This section above is highly important because here we have to show the compiler the locations of

the header or include files. Check the step numbering carefully.

Lastly disable Warning Number 16. Now, we are good to code.

I made a small YouTube video on all the above discussed processes. If you didn’t understand some

part or if you are confused at some point, you can watch the video here.

https://youtu.be/nHCjFw2TS4M

Page | 14

Now let us discuss about uploading codes to STC micros. The most advantageous part is the fact that

we don’t need to invest on a dedicated programmer as with other microcontrollers as a simple USB-

serial converter will do the job. However, on first go things may look confusing.

Shown above is the STC-ISP tool’s screenshot with numbers. We have to follow them one-by-one and

in incremental order. 1 denotes that we must select the right COM port and part number. You can use

Windows Device Manager to find out which COM port is being used for uploading code. Step 2 is to

select the target HEX code file. Optionally in step 3, we can set some additional internal MCU

parameters. When everything has been set properly, we can hit the Download Program button shown

in step 4. If the target microcontroller or board is already powered then the code won’t be uploaded.

This is the confusing part because it should have been the other way.

Page | 15

Notice the red arrow in the schematic below. The code is not uploaded by holding and releasing the

reset button for some time or by pulling high or low some special pin or by some other means. We

need to create a handshake between the PC and the target MCU and this is done when the MCU is

powered off and then powered on, i.e., when the micro is powered up.

This is why the red arrow highlights the power switch in the schematic. Though the schematic shows

a MAX232-based converter, we can use a USB-serial converter instead.

All of these steps are demoed in this video. Note that no external USB-serial converter/cable can be

seen in the video as it is embedded in the board. The following schematic and photo will make this

fact clearer. This is why most STC development boards come with such arrangement and without any

programmer.

https://youtu.be/PcvktG9sc9Q

Page | 16

Page | 17

About STC8A8K64S4A12 Microcontroller and its Development Board

Many Chinese microcontroller manufacturers develop awesome and cheap general-purpose MCUs

using the popular 8051 architecture. There are many reasons for that but most importantly the 8051

architecture is a very common one that has been around for quite a long time. Secondly,

manufacturing MCUs with 8051 DNA allows manufacturers to focus less on developing their own

proprietary core and to give more effort in adding features. Holtek, Nuvoton, STC, etc are a few

manufacturers to name.

Rather than mastering a good old 8051-based microcontroller like the AT89C52 or similar, it is better

to learn something new that has many similarities with that architecture. As mentioned earlier, STC

has various flavour of microcontrollers based on 8051 cores. STC8A8K64S4A12 of the STC8 family is

one such example. Here for this documentation, I will be using this MCU specifically. In short, it is a

beast as it offers lot of additional hardware that are usually not seen in regular 8051s. Some key

features are listed below. The red box highlights the STC8A8K64S4A12 micro in particular.

Page | 18

I chose STC8A8K64S4A12 for this tutorial for all of its rich features. My favourite features include 12-

bit ADC, multiple timers, reduced EMI feature and PCA module.

Now let’s see the naming convention of STC microcontrollers. The figure below shows us what the

name of a STC8 micro means:

Page | 19

The name STC8A8K64S4A12 is quite a mouthful and given the nomenclature info, STC8A8K64SA412 is

actually a STC8 series micro with on-chip 12-bit ADC, 8kB SRAM, 64kB code space and 4 hardware

serial (UART) ports. Apart from these hardware thingies, the naming convention does not reveal other

cool features, for if it had been so, the device name would be even longer.

Initially I wanted to make this tutorial with the STC15F(L)204EA microcontroller but later I changed my

mind because STC8A8K64S4A12 is much richer in hardware peripheral terms than STC15F(L)204EA,

not to mention several similar hardware are present in both models of microcontroller. Since I planned

to use STC8A8K64S4A12, I waited for the arrival of the board shown below before completing this

work. Although this development board is an official board, it has been smartly designed for fast

learning and rapid deployment of projects. As a matter of fact, if someone learns about this micro with

this board, he/she will rule over all of STC’s 8051-based line-up.

Page | 20

This board has the following schematic and it will be needed throughout this tutorial.

On board, we have connectors for OLED display, GLCD, LCD, TFT Display, nRF24L01 transceiver,

ESP8266 Wi-Fi module, etc. We also have on board W25x16 flash, 24C04 EEPROM, RS485

communication bridge and a CH340G USB-serial converter that doubles as an on-board programmer.

Page | 21

My Customized BSP

To deal with the vast array of peripherals of STC8A8K64S4A12, I needed something to quickly deploy

projects without going through the registers every time. Having gotten the idea of Board Support

Package (BSP) while working with Nuvoton N76E003, it was time for me to develop something similar

for STC micros here as officially STC does not have such beautiful software implementation for their

microcontrollers. However, STC does provide lot of both C and assembly language examples in their

reference manuals and programmer GUI unlike other manufacturers. Those examples, though helpful,

do not fit in all possible scenarios and often incomplete in terms of meaning. By having a BSP, we can

use our micro’s hardware peripherals more efficiently with ease and in a wide variety of ways. We

would no longer need to create and call functions for hardware peripherals every time. Nuvoton, TI,

STMicroelectronics, Silicon Labs and many other mainstream microcontroller manufacturers are

tooling various methods to reduce coding efforts and aid in rapid code development.

It is not an easy task to go through an entire reference manual, reading and trying out everything one-

by-one. However, I had to do it no matter how painstaking job it was. This is because firstly, I hate

setting registers repetitively every single time when I want to make a new project and secondly, I want

to make work easy so that less time, resource and effort are spent. I also have a tendency to forget

things quickly. This solution will be as such that it can be modified easily and ported for other STC

microcontrollers as well.

I have developed my BSP for STC8A8K64S4A12 in an orderly fashion. There are header files for each

hardware peripherals that contain all necessary functions and definitions. An example of

STC8A8K64S4A12’s watchdog timer’s header file is shown below:

/*
 Watchdog Overflow Time = ((12 * 32768 * 2^(WDT_PS + 1)) / Sysclk)
*/
#define WDT_div_factor_2 0x00
#define WDT_div_factor_4 0x01
#define WDT_div_factor_8 0x02
#define WDT_div_factor_16 0x03
#define WDT_div_factor_32 0x04
#define WDT_div_factor_64 0x05
#define WDT_div_factor_128 0x06
#define WDT_div_factor_256 0x07

#define WDT_set_prescalar(value) do{ \
 WDT_CONTR &= 0xF8; \
 WDT_CONTR |= value; \
 }while(0)

//CNT_mode
#define WDT_stop_counting_in_idle_mode 0x00
#define WDT_continue_counting_in_idle_mode 0x08

#define WDT_start bit_set(WDT_CONTR, 5)

#define WDT_get_overflow_flag get_bit(WDT_CONTR, 7)
#define WDT_clear_overflow_flag bit_set(WDT_CONTR, 7)

#define WDT_reset bit_set(WDT_CONTR, 4)

#define WDT_clear do{ \
 WDT_CONTR = 0x00; \
 }while(0)

#define WDT_setup(CNT_mode, PS) do{ \
 WDT_clear; \
 WDT_CONTR |= CNT_mode; \
 WDT_set_prescalar(PS); \
 }while(0)

Page | 22

Now let’s see what the registers and their settings look like:

As we can see there are a whole bunch of settings that need attention while using. This is perhaps the

easiest way to show what I wanted to achieve.

Please note that I have tested most of the stuffs that STC8A8K64S4A12 could offer. I tested them

rigorously and with confidence I can say all of these functions have been found to be okay. Being the

sole developer, I did my checks as much as possible but there could be unforeseen bugs that I may

have overlooked. A typical case could be wrong function naming. This is so because during

development of these BSP files I made several changes when new issues appeared. Therefore, I would

like to request readers to report any issue when discovered and I would also like readers to read the

reference manual of STC8 series completely if possible.

The examples presented in this document are based on my custom BSP and I believe that the journey

with STC microcontroller supported by my BSP would be a joyful one.

Page | 23

General Purpose Input-Output (GPIO)

The very first thing to do with a new microcontroller is to play with its GPIOs and this is what we will

begin with. STC micros are based on 8051 architecture and so it is no surprise that the GPIOs will have

similarities with typical 8051s. GPIOs of STC micros are essentially same as those of Nuvoton N76E003.

Those who have seen my past Nuvoton tutorials will find similarities.

I/O Type Description

Quasi-Bidirectional
Mode

In this mode, a GPIO behaves like the GPIO of a typical 8051, i.e., the GPIO can
simultaneously act like an input and an output, hence the term “bidirectional”.

Push – Pull Mode This mode is same as the first one but with stronger current sourcing capability
and is recommended when making outputs.

Input Only Mode Unlike other modes, this is intended specifically for dedicated high-impedance
input or simply GPIO input.

Open-Drain Mode As the name suggests, it is same as Quasi bidirectional mode but with open-
drain output that can only sink current, i.e., external pull-up is required.

BSP

//P00
#define P00_quasi_bidirectional_mode do{bit_clr(P0M1, 0); bit_clr(P0M0, 0);}while(0)
#define P00_push_pull_mode do{P00_quasi_bidirectional_mode; bit_clr(P0M1, 0); bit_set(P0M0, 0);}while(0)
#define P00_input_mode do{P00_quasi_bidirectional_mode; bit_set(P0M1, 0); bit_clr(P0M0, 0);}while(0)
#define P00_open_drain_mode do{P00_quasi_bidirectional_mode; bit_set(P0M1, 0); bit_set(P0M0, 0);}while(0)

#define P00_pull_up_enable do{bit_set(P_SW2, 7); bit_set(P0PU, 0); bit_clr(P_SW2, 7);}while(0)
#define P00_pull_up_disable do{bit_set(P_SW2, 7); bit_clr(P0PU, 0); bit_clr(P_SW2, 7);}while(0)

#define P00_schmitt_trigger_enable do{bit_set(P_SW2, 7); bit_set(P0NCS, 0); bit_clr(P_SW2, 7);}while(0)
#define P00_schmitt_trigger_disable do{bit_set(P_SW2, 7); bit_clr(P0NCS, 0); bit_clr(P_SW2, 7);}while(0)

#define P00_high bit_set(P0, 0)
#define P00_low bit_clr(P0, 0)
#define P00_toggle bit_tgl(P0, 0)
#define P00_get_input get_bit(P0, 0)

http://embedded-lab.com/blog/category/nuvoton/

Page | 24

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);

void main(void)
{
 setup();

 while(1)
 {
 P55_toggle;

 if(P52_get_input == 0)
 {
 delay_ms(400);
 }

 delay_ms(200);
 };
}

void setup(void)
{
 P55_open_drain_mode;

 P52_input_mode;
 P52_pull_up_enable;
}

Schematic

Page | 25

Explanation

Like always this first example is a simple variable flash rate LED flasher. Onboard LED connected to

P5.5 and onboard push button connected to P5.2 are used. The board’s schematic shows us that P5.2’s

push button must have an internal pull-up to properly function because it is not tied to any external

pull-up resistor and P5.5’s LED must be configured as an open-drain output. These are configured so

in the setup function.

void setup(void)
{
 P55_open_drain_mode;
 P52_input_mode;
 P52_pull_up_enable;
}

In the main loop, P5.5’s LED state is toggled every 200ms. If P5.2’s push button is pressed, P5.2’s state

changes and so additional 400ms delay is added, making the total toggling delay 600ms.

P55_toggle;
if(P52_get_input == 0)
{
 delay_ms(400);
}
delay_ms(200);

Note no clock settings are applied and the micro is running at default clock frequency of 24MHz.

Demo

Demo video link: https://youtu.be/_uNaNCzJUwM.

https://youtu.be/_uNaNCzJUwM

Page | 26

Clock System

STC8A8K64S4A12’s clock system is very straight forward. There are three available clock sources – two

of which are internal. There is a high-precision 24MHz internal oscillator and a low accuracy internal

32kHz oscillator. Apart from these internal sources, we can also use external sources like external

crystals or oscillators. The clock system block diagram is shown below:

To set desired clock frequency, we have a clock divider block right after clock selection block. The final

output from the clock divider is the system clock that is feed to all peripherals.

We can also get system clock output via another block of clock divider. The output can be turned off

or extracted from either pin P5.4 or P1.6.

BSP

#define CLK_enable_IRC24_M do{ \
 IRC24MCR = 0x80; \
 while((IRC24MCR & 0x01) == FALSE); \
 }while(0)

#define CLK_disable_IRC24_M do{ \
 bit_set(P_SW2, 7); \
 IRC24MCR = 0x00; \
 bit_clr(P_SW2, 7); \
 }while(0)

#define CLK_enable_IRC32_k do{ \
 IRC32KCR = 0x80; \
 while((IRC32KCR & 0x01) == FALSE); \
 }while(0)

#define CLK_disable_IRC32_k do{ \
 bit_set(P_SW2, 7); \
 IRC32KCR = 0x00; \
 bit_clr(P_SW2, 7); \
 }while(0)

#define CLK_enable_EXT_clock_signal do{ \
 XOSCCR = 0x80; \
 while((XOSCCR & 0x01) == FALSE); \
 }while(0)

#define CLK_disable_EXT_clock_signal do{ \
 bit_set(P_SW2, 7); \
 XOSCCR = 0x00; \
 bit_clr(P_SW2, 7); \
 }while(0)

#define CLK_enable_EXT_crystal do{ \
 XOSCCR = 0xC0; \
 while((XOSCCR & 0x01) == FALSE); \
 }while(0)

Page | 27

#define CLK_disable_EXT_crystal CLK_disable_EXT_clock_signal

//sys_div
#define CLK_sys_clk_scalar(div) CLKDIV = div

//src
#define IRC_24M 0
#define EXT_xtal 1
#define EXT_clk 2
#define IRC_32k 3

#define CLK_set_sys_clk_source_and_div(clk_src, div) do{ \
 if(clk_src == IRC_32k) \
 { \
 CLK_enable_IRC32_k; \
 } \
 else if(clk_src == EXT_clk) \
 { \
 CLK_enable_EXT_clock_signal; \
 } \
 else if(clk_src == EXT_xtal) \
 { \
 CLK_enable_EXT_crystal; \
 } \
 else \
 { \
 CLK_enable_IRC24_M; \
 } \
 CLK_sys_clk_scalar(div); \
 CKSEL = clk_src; \
 }while(0)

//mclk_div
#define MCLK_SYSCLK_no_output 0x00
#define MCLK_SYSCLK_div_1 0x10
#define MCLK_SYSCLK_div_2 0x30
#define MCLK_SYSCLK_div_4 0x50
#define MCLK_SYSCLK_div_8 0x70
#define MCLK_SYSCLK_div_16 0x90
#define MCLK_SYSCLK_div_32 0xB0
#define MCLK_SYSCLK_div_64 0xD0
#define MCLK_SYSCLK_div_128 0xF0

#define CLK_MCLK_scalar(div) CKSEL |= div

//mclk_pin_id
#define MCLK_out_P54 0
#define MCLK_out_P16 1

#define CLK_set_MCLK(div, pin_id) do{ \
 CLK_MCLK_scalar(div); \
 if(pin_id == MCLK_out_P16) \
 { \
 bit_set(CKSEL, 3); \
 } \
 else \
 { \
 bit_clr(CKSEL, 3); \
 } \
 }while(0)

#define CLK_set_sys_clk(sys_src, sys_div, mclk_div, mclk_pin_id) do{ \
 bit_set(P_SW2, 7); \
 CLK_set_sys_clk_source_and_div(sys_src, sys_div); \
 CLK_set_MCLK(mclk_div, mclk_pin_id); \
 bit_clr(P_SW2, 7); \
 }while(0)

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);
void toggle(void);

void main(void)
{

 setup();

 while(1)
 {

Page | 28

 };
}

void setup(void)
{
 P55_open_drain_mode;

 CLK_set_sys_clk(IRC_24M, 4, MCLK_SYSCLK_div_1, MCLK_out_P54);
 toggle();

 CLK_set_sys_clk(IRC_24M, 6, MCLK_SYSCLK_div_8, MCLK_out_P54);
 toggle();

 CLK_set_sys_clk(IRC_24M, 24, MCLK_SYSCLK_div_1, MCLK_out_P54);
 toggle();

 CLK_set_sys_clk(IRC_32k, 1, MCLK_SYSCLK_div_1, MCLK_out_P54);
 toggle();
}

void toggle(void)
{
 unsigned char i = 10;

 while(i > 0)
 {
 P55_toggle;
 delay_ms(60);
 i--;
 };
}

Schematic

Page | 29

Explanation

This is yet another oversimplified example. Again, onboard LED toggling code is presented here.

Firstly, we need a LED toggling function because we want to visually observe what is happening.

void toggle(void)
{
 unsigned char i = 10;

 while(i > 0)
 {
 P55_toggle;
 delay_ms(60);
 i--;
 };
}

P5.5’s LED is toggled 10 times. Note that although a 60ms delay is used between toggles, it will not be

60ms always as delays are dependent on system clock frequency. This will do the trick.

In the main, different clock settings are applied and the LED toggling is observed.

CLK_set_sys_clk(IRC_24M, 4, MCLK_SYSCLK_div_1, MCLK_out_P54);
toggle();

CLK_set_sys_clk(IRC_24M, 6, MCLK_SYSCLK_div_8, MCLK_out_P54);
toggle();

CLK_set_sys_clk(IRC_24M, 24, MCLK_SYSCLK_div_1, MCLK_out_P54);
toggle();

CLK_set_sys_clk(IRC_32k, 1, MCLK_SYSCLK_div_1, MCLK_out_P54);
toggle();

With different system clock speeds, the onboard LED toggling rates change.

Demo

Demo video link: https://youtu.be/jNwxc3bJ1C8.

https://youtu.be/jNwxc3bJ1C8

Page | 30

Interfacing 2x16 LCD

After having both clock system and GPIO mastered, the next important thing to do is to drive an

ordinary alphanumerical LCD or simply text LCD. This is very important as text LCDs are great tools for

quickly and visually displaying information.

Code

LCD.h

#define LCD_GPIO_init() do{P35_push_pull_mode; \
 P36_push_pull_mode; \
 P37_push_pull_mode; \
 P04_push_pull_mode; \
 P05_push_pull_mode; \
 P06_push_pull_mode; \
 P07_push_pull_mode; \
 }while(0)

#define LCD_RS_HIGH P35_high
#define LCD_RS_LOW P35_low

#define LCD_RW_HIGH P36_high
#define LCD_RW_LOW P36_low

#define LCD_EN_HIGH P37_high
#define LCD_EN_LOW P37_low

#define LCD_DB4_HIGH P04_high
#define LCD_DB4_LOW P04_low

Page | 31

#define LCD_DB5_HIGH P05_high
#define LCD_DB5_LOW P05_low

#define LCD_DB6_HIGH P06_high
#define LCD_DB6_LOW P06_low

#define LCD_DB7_HIGH P07_high
#define LCD_DB7_LOW P07_low

#define clear_display 0x01
#define goto_home 0x02

#define cursor_direction_inc (0x04 | 0x02)
#define cursor_direction_dec (0x04 | 0x00)
#define display_shift (0x04 | 0x01)
#define display_no_shift (0x04 | 0x00)

#define display_on (0x08 | 0x04)
#define display_off (0x08 | 0x02)
#define cursor_on (0x08 | 0x02)
#define cursor_off (0x08 | 0x00)
#define blink_on (0x08 | 0x01)
#define blink_off (0x08 | 0x00)

#define _8_pin_interface (0x20 | 0x10)
#define _4_pin_interface (0x20 | 0x00)
#define _2_row_display (0x20 | 0x08)
#define _1_row_display (0x20 | 0x00)
#define _5x10_dots (0x20 | 0x40)
#define _5x7_dots (0x20 | 0x00)

#define DAT 1
#define CMD 0

void LCD_init(void);
void LCD_send(unsigned char value, unsigned char mode);
void LCD_4bit_send(unsigned char lcd_data);
void LCD_putstr(char *lcd_string);
void LCD_putchar(char char_data);
void LCD_clear_home(void);
void LCD_goto(unsigned char x_pos, unsigned char y_pos);
void toggle_EN_pin(void);

LCD.c

#include "LCD.h"

void LCD_init(void)
{
 delay_ms(10);

 LCD_GPIO_init();

 LCD_RW_LOW;

 LCD_RS_LOW;
 delay_ms(10);
 toggle_EN_pin();

 LCD_send(0x33, CMD);
 LCD_send(0x32, CMD);

 LCD_send((_4_pin_interface | _2_row_display | _5x7_dots), CMD);
 LCD_send((display_on | cursor_off | blink_off), CMD);
 LCD_send((clear_display), CMD);
 LCD_send((cursor_direction_inc | display_no_shift), CMD);
}

void LCD_send(unsigned char value, unsigned char mode)
{
 switch(mode)
 {

Page | 32

 case DAT:
 {
 LCD_RS_HIGH;
 break;
 }
 case CMD:
 {
 LCD_RS_LOW;
 break;
 }
 }

 LCD_4bit_send(value);
}

void LCD_4bit_send(unsigned char lcd_data)
{
 unsigned char temp = 0;

 temp = ((lcd_data & 0x80) >> 7);

 switch(temp)
 {
 case 1:
 {
 LCD_DB7_HIGH;
 break;
 }
 default:
 {
 LCD_DB7_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x40) >> 6);

 switch(temp)
 {
 case 1:
 {
 LCD_DB6_HIGH;
 break;
 }
 default:
 {
 LCD_DB6_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x20) >> 5);

 switch(temp)
 {
 case 1:
 {
 LCD_DB5_HIGH;
 break;
 }
 default:
 {
 LCD_DB5_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x10) >> 4);

 switch(temp)
 {
 case 1:
 {
 LCD_DB4_HIGH;
 break;
 }
 default:
 {

Page | 33

 LCD_DB4_LOW;
 break;
 }
 }

 toggle_EN_pin();

 temp = ((lcd_data & 0x08) >> 3);

 switch(temp)
 {
 case 1:
 {
 LCD_DB7_HIGH;
 break;
 }
 default:
 {
 LCD_DB7_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x04) >> 2);

 switch(temp)
 {
 case 1:
 {
 LCD_DB6_HIGH;
 break;
 }
 default:
 {
 LCD_DB6_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x02) >> 1);

 switch(temp)
 {
 case 1:
 {
 LCD_DB5_HIGH;
 break;
 }
 default:
 {
 LCD_DB5_LOW;
 break;
 }
 }

 temp = ((lcd_data & 0x01));

 switch(temp)
 {
 case 1:
 {
 LCD_DB4_HIGH;
 break;
 }
 default:
 {
 LCD_DB4_LOW;
 break;
 }
 }

 toggle_EN_pin();
}

void LCD_putstr(char *lcd_string)
{
 do
 {

Page | 34

 LCD_send(*lcd_string++, DAT);
 }while(*lcd_string != '\0');
}

void LCD_putchar(char char_data)
{
 LCD_send(char_data, DAT);
}

void LCD_clear_home(void)
{
 LCD_send(clear_display, CMD);
 LCD_send(goto_home, CMD);
}

void LCD_goto(unsigned char x_pos, unsigned char y_pos)
{
 if(y_pos == 0)
 {
 LCD_send((0x80 | x_pos), CMD);
 }
 else
 {
 LCD_send((0x80 | 0x40 | x_pos), CMD);
 }
}

void toggle_EN_pin(void)
{
 LCD_EN_HIGH;
 delay_ms(2);
 LCD_EN_LOW;
 delay_ms(2);
}

lcd_print.h

#define no_of_custom_symbol 1
#define array_size_per_symbol 8
#define array_size (array_size_per_symbol * no_of_custom_symbol)

void load_custom_symbol(void);
void print_symbol(unsigned char x_pos, unsigned char y_pos, unsigned char symbol_index);
void print_C(unsigned char x_pos, unsigned char y_pos, signed int value);
void print_I(unsigned char x_pos, unsigned char y_pos, signed long value);
void print_D(unsigned char x_pos, unsigned char y_pos, signed int value, unsigned char points);
void print_F(unsigned char x_pos, unsigned char y_pos, float value, unsigned char points);

lcd_print.c

#include "lcd_print.h"

void load_custom_symbol(void)
{
 unsigned char s = 0;

 const unsigned char custom_symbol[array_size] =
 {
 0x00, 0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00
 };

 LCD_send(0x40, CMD);

 for(s = 0; s < array_size; s++)
 {
 LCD_send(custom_symbol[s], DAT);
 }

Page | 35

 LCD_send(0x80, CMD);
}

void print_symbol(unsigned char x_pos, unsigned char y_pos, unsigned char symbol_index)
{
 LCD_goto(x_pos, y_pos);
 LCD_send(symbol_index, DAT);
}

void print_C(unsigned char x_pos, unsigned char y_pos, signed int value)
{
 char ch[5] = {0x20, 0x20, 0x20, 0x20, '\0'};

 if(value < 0x00)
 {
 ch[0] = 0x2D;
 value = -value;
 }
 else
 {
 ch[0] = 0x20;
 }

 if((value > 99) && (value <= 999))
 {
 ch[1] = ((value / 100) + 0x30);
 ch[2] = (((value % 100) / 10) + 0x30);
 ch[3] = ((value % 10) + 0x30);
 }
 else if((value > 9) && (value <= 99))
 {
 ch[1] = (((value % 100) / 10) + 0x30);
 ch[2] = ((value % 10) + 0x30);
 ch[3] = 0x20;
 }
 else if((value >= 0) && (value <= 9))
 {
 ch[1] = ((value % 10) + 0x30);
 ch[2] = 0x20;
 ch[3] = 0x20;
 }

 LCD_goto(x_pos, y_pos);
 LCD_putstr(ch);
}

void print_I(unsigned char x_pos, unsigned char y_pos, signed long value)
{
 char ch[7] = {0x20, 0x20, 0x20, 0x20, 0x20, 0x20, '\0'};

 if(value < 0)
 {
 ch[0] = 0x2D;
 value = -value;
 }
 else
 {
 ch[0] = 0x20;
 }

 if(value > 9999)
 {
 ch[1] = ((value / 10000) + 0x30);
 ch[2] = (((value % 10000)/ 1000) + 0x30);
 ch[3] = (((value % 1000) / 100) + 0x30);
 ch[4] = (((value % 100) / 10) + 0x30);
 ch[5] = ((value % 10) + 0x30);
 }

 else if((value > 999) && (value <= 9999))
 {
 ch[1] = (((value % 10000)/ 1000) + 0x30);
 ch[2] = (((value % 1000) / 100) + 0x30);
 ch[3] = (((value % 100) / 10) + 0x30);

Page | 36

 ch[4] = ((value % 10) + 0x30);
 ch[5] = 0x20;
 }
 else if((value > 99) && (value <= 999))
 {
 ch[1] = (((value % 1000) / 100) + 0x30);
 ch[2] = (((value % 100) / 10) + 0x30);
 ch[3] = ((value % 10) + 0x30);
 ch[4] = 0x20;
 ch[5] = 0x20;
 }
 else if((value > 9) && (value <= 99))
 {
 ch[1] = (((value % 100) / 10) + 0x30);
 ch[2] = ((value % 10) + 0x30);
 ch[3] = 0x20;
 ch[4] = 0x20;
 ch[5] = 0x20;
 }
 else
 {
 ch[1] = ((value % 10) + 0x30);
 ch[2] = 0x20;
 ch[3] = 0x20;
 ch[4] = 0x20;
 ch[5] = 0x20;
 }

 LCD_goto(x_pos, y_pos);
 LCD_putstr(ch);
}

void print_D(unsigned char x_pos, unsigned char y_pos, signed int value, unsigned char points)
{
 char ch[5] = {0x2E, 0x20, 0x20, 0x20, 0x20};

 ch[1] = ((value / 100) + 0x30);

 if(points > 1)
 {
 ch[2] = (((value / 10) % 10) + 0x30);

 if(points > 1)
 {
 ch[3] = ((value % 10) + 0x30);
 }
 }

 LCD_goto(x_pos, y_pos);
 LCD_putstr(ch);
}

void print_F(unsigned char x_pos, unsigned char y_pos, float value, unsigned char points)
{
 signed long tmp = 0x00000000;

 tmp = value;
 print_I(x_pos, y_pos, tmp);
 tmp = ((value - tmp) * 1000);

 if(tmp < 0)
 {
 tmp = -tmp;
 }

 if(value < 0)
 {
 value = -value;
 LCD_goto(x_pos, y_pos);
 LCD_putchar(0x2D);
 }
 else
 {
 LCD_goto(x_pos, y_pos);
 LCD_putchar(0x20);
 }

Page | 37

 if((value >= 10000) && (value < 100000))
 {
 print_D((x_pos + 6), y_pos, tmp, points);
 }
 else if((value >= 1000) && (value < 10000))
 {
 print_D((x_pos + 5), y_pos, tmp, points);
 }
 else if((value >= 100) && (value < 1000))
 {
 print_D((x_pos + 4), y_pos, tmp, points);
 }
 else if((value >= 10) && (value < 100))
 {
 print_D((x_pos + 3), y_pos, tmp, points);
 }
 else if(value < 10)
 {
 print_D((x_pos + 2), y_pos, tmp, points);
 }
}

main.c

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"

void setup(void);
void show_value(unsigned char value);

void main(void)
{
 unsigned char s = 0x00;

 char txt1[] = {"MICROARENA"};
 char txt2[] = {"SShahryiar"};
 char txt3[] = {"STC8A Series"};
 char txt4[] = {"STC8A8K64S4A12"};

 setup();

 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);
 LCD_goto(3, 1);
 LCD_putstr(txt2);
 delay_ms(4000);

 LCD_clear_home();

 for(s = 0; s < 12; s++)
 {
 LCD_goto((2 + s), 0);
 LCD_putchar(txt3[s]);
 delay_ms(60);
 }
 for(s = 0; s < 14; s++)
 {
 LCD_goto((1 + s), 1);
 LCD_putchar(txt4[s]);
 delay_ms(60);
 }
 delay_ms(4000);

 s = 0;
 LCD_clear_home();

 LCD_goto(3, 0);
 LCD_putstr(txt1);

 while(1)

Page | 38

 {
 show_value(s);
 s++;
 delay_ms(400);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_div_1, MCLK_out_P54);

 LCD_init();
}

void show_value(unsigned char value)
{
 unsigned char ch = 0x00;

 ch = ((value / 100) + 0x30);
 LCD_goto(6, 1);
 LCD_putchar(ch);

 ch = (((value / 10) % 10) + 0x30);
 LCD_goto(7, 1);
 LCD_putchar(ch);

 ch = ((value % 10) + 0x30);
 LCD_goto(8, 1);
 LCD_putchar(ch);
}

Schematic

Explanation

I have demoed this example in all of my past tutorials and so I won’t be explaining it again. The only

trick I would like to share is the fact that LCD datasheet documents state how to drive and initialize

them. Thus, it is best to read datasheet and try to implement on own. It is very simple.

Page | 39

Demo

Demo video link: https://youtu.be/-fOvuPexRKM.

https://youtu.be/-fOvuPexRKM

Page | 40

External Interrupt (EXTI)

STC microcontrollers have complex interrupt systems. Literally, all internal peripherals have interrupt

capabilities. The block diagram of STC8A8K64S4A12’s interrupt system shows this. In this section, we

would see the use of external interrupt and in later examples we would see other interrupts.

External interrupt has lot of uses in modern embedded systems. When coupled with low power

consumption modes, external interrupts can be used to wake up a device and do certain task upon

user’s stimulated input via a button, keypad, touchpad, etc. External interrupts are what used in most

portable battery-operated devices like computer mice, keyboards, remote controllers, etc. In such

devices, precious battery energy is conserved by spending most time in low power modes and waiting

for user interactions. When there is a user input, external interrupts are kicked in and some tasks are

done quickly before returning to dormant low power modes.

Code

#include "STC8xxx.h"
#include "BSP.h"

unsigned char s = 0;
unsigned int i = 0;

void setup(void);

void EXT_0_ISR(void)
interrupt 0
{
 for(s = 0; s <= 9; s++)
 {
 P55_toggle;
 for(i = 0; i < 10000; i++);
 }
}

Page | 41

void EXT_1_ISR(void)
interrupt 2
{
 for(s = 0; s <= 9; s++)
 {
 P55_toggle;
 for(i = 0; i < 30000; i++);
 }
}

void main(void)
{
 setup();

 while(1)
 {
 P55_low;
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 24, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P55_open_drain_mode;

 EXT_0_priority_0;
 EXT_0_falling_edge_detection_only;
 _enable_EXT_0_interrupt;

 EXT_1_priority_1;
 EXT_1_falling_edge_detection_only;
 _enable_EXT_1_interrupt;

 _enable_global_interrupt;
}

Schematic

Page | 42

Explanation

First, let us see how we can enable external interrupt. Although external interrupts are GPIO input

feature, we do not have to set external interrupt pins as inputs. This is done automatically and

internally.

8051 architecture allows prioritization of interrupts. This means that when there are simultaneous

multiple interrupts, the interrupts are served in an orderly fashion according to the level of priority.

STC8A8K64S4A12 has 22 interrupt sources and 4 levels of priority. Although it is not mandatory to set

priority in most cases, some applications may need this feature. In this demo code, external interrupt

1 has higher priority than external interrupt 0 and so it would be processed first and then external

interrupt 0 would be processed afterwards.

EXT_0_priority_0;
EXT_0_falling_edge_detection_only;
_enable_EXT_0_interrupt;

EXT_1_priority_1;
EXT_1_falling_edge_detection_only;
_enable_EXT_1_interrupt;

_enable_global_interrupt;

The next thing to do when setting external interrupts is to let the MCU know which edges would trigger

the interrupts. Finally, the interrupts are enabled along with global interrupt flag bit.

Like other examples onboard LED is used as an indicator. Inside each interrupt service routine, this

LED is toggled but the rates of toggling are different. This would differentiate the interrupts.

void EXT_0_ISR(void)
interrupt 0
{
 for(s = 0; s <= 9; s++)
 {
 P55_toggle;
 for(i = 0; i < 10000; i++);
 }
}

void EXT_1_ISR(void)
interrupt 2
{
 for(s = 0; s <= 9; s++)
 {
 P55_toggle;
 for(i = 0; i < 30000; i++);
 }
}

When external interrupt 0 is triggered, the LED toggles fast and when external interrupt 1 is triggered,

the LED toggles slowly. If external interrupt 0 is triggered while external interrupt 1 is being processed,

external interrupt 0’s task is processed after completing external interrupt 1’s service routine. It is as

if the MCU remembers the low priority interrupt after completing the higher priority interrupt. If

external interrupt 1 is triggered while external interrupt 0 is being processed, the tasks in external

interrupt 0 is temporarily suspended and external interrupt 1 is processed. After processing external

interrupt 1, the suspended tasks of external interrupt 0 are resumed from where they were left.

Page | 43

Demo

Demo video link: https://youtu.be/_dHcJr7-X0I.

https://youtu.be/_dHcJr7-X0I

Page | 44

Analogue Comparator (AC)

Analogue comparator is not typically found in many microcontrollers but STC8A8K64S4A12 packs one

analogue comparator. Though this comparator has limited options, it is still very useful and very easy

to use. It can be used for low battery/voltage detection, for comparing voltage levels, etc. The

comparator can also be used to build simple switch mode power supplies and achieve feedback for

various tasks.

The comparator block shows that P3.6 and P3.7 GPIO pins can be used as positive and negative inputs

to the comparator unit. Alternatively, we can also use internal 1.344V voltage reference source or ADC

input. The comparator output can be optionally filtered both using analogue and digital techniques.

Lastly, we can retrieve comparator output via GPIO pins, flag and interrupts.

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);

void main(void)
{
 setup();

 while(1)
 {
 if(CMP_get_comp_status != 0x00)
 {
 P55_low;
 }
 else
 {
 P55_high;
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, \
 2, \
 MCLK_SYSCLK_no_output, \
 MCLK_out_P54);

 P55_open_drain_mode;

Page | 45

 CMP_setup(CMP_positive_input_P37, \
 CMP_negative_input_P36, \
 CMP_output_disable, \
 CMP_result_positive_output, \
 CMP_enable_analog_filtering, \
 0x04);

 CMP_enable;
}

Schematic

Explanation

Analogue comparator is set up very easily by choosing the positive and negative input sources, output

state, result state and filtering values. After setting all these, the comparator needs to be enabled.

CMP_setup(CMP_positive_input_P37, \
 CMP_negative_input_P36, \
 CMP_output_disable, \
 CMP_result_positive_output, \
 CMP_enable_analog_filtering, \
 0x04);

CMP_enable;

Here, we used the GPIO pins P3.6 and P3.7 as physical inputs to the comparator unit. We disabled the

physical comparator output. The comparator will give output when positive input is larger than

negative input. Lastly, 0.1µs analogue filtering is used along with some digital filtering by the addition

of some latency. These filtering ensure that short-lived false signals are ignored.

Inside the main loop, comparator’s result flag status is continuously monitored. P5.5 onboard LED is

turned on or off according to this flag’s status.

if(CMP_get_comp_status != 0x00)
{
 P55_low;
}
else
{
 P55_high;
}

Page | 46

Demo

Demo video link: https://youtu.be/TuKMcBxPxf0.

https://youtu.be/TuKMcBxPxf0

Page | 47

Analogue-to-Digital Converter (ADC)

STC8A8K64S4A12’s 12-bit analogue-to-digital converter is an attractive feature. In the market, there

are many enhanced 8051-core microcontrollers but most don’t have any built-in ADC while some have

low resolution ones. Like the analogue comparator, the ADC of STC8A8K64S4A12 is very simple and

have limited basic options. The speed of this ADC can reach up to 800ksps. However, some care needs

to be taken in order to maintain accuracy and consistency in measurements. For better results it is

better to use well-calibrated external voltage reference source and additional filtering. These are well

documented in STC8A8K64S4A12 reference manual and a sample diagram is shown below.

Page | 48

Code

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"

void setup(void);

void main(void)
{
 unsigned int ADC_count = 0x0000;
 float voltage = 0.0;

 setup();

 LCD_goto(0, 0);
 LCD_putstr("CH0/V:");

 LCD_goto(0, 1);
 LCD_putstr("CH1/V:");

 while(1)
 {
 ADC_count = ADC_get_result(CH0);
 voltage = (((float)ADC_count * 5.0) / 4095.0);
 print_F(10, 0, voltage, 3);

 ADC_count = ADC_get_result(CH1);
 voltage = (((float)ADC_count * 5.0) / 4095.0);
 print_F(10, 1, voltage, 3);

 delay_ms(400);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 4, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P10_input_mode;
 P11_input_mode;

 ADC_enable;
 ADC_result_format_right_aligned;
 ADC_set_conversion_speed(ADC_conv_256_CLKs);

 LCD_init();
 LCD_clear_home();
}

Schematic

Page | 49

Explanation

This ADC example utilizes polling method to get voltage reading from two ADC channels associated

with pins P1.0 and P1.1.

System clock setting is very important and this is so because AD conversion speed is dependent of this

clock.

where

CLK_set_sys_clk(IRC_24M, 4, MCLK_SYSCLK_no_output, MCLK_out_P54);

In our case, the system clock is 6MHz and so FADC is 732Hz. Though the conversion speed is not pretty

impressive, it is good enough for this example as sensing voltage variations are not rapid. Nyquist

criterion should always be kept in mind while sampling analogue signals.

ADC Input pins need to declared as inputs.

P10_input_mode;
P11_input_mode;

ADC setup is pretty straight. All we need to do is to enable the ADC, select data output alignment and

ADC clock speed prescalar.

ADC_enable;
ADC_result_format_right_aligned;
ADC_set_conversion_speed(ADC_conv_256_CLKs);

Page | 50

Data output can be either left-aligned or right-aligned. Right-aligned data is easy to read and that is

why it my choice.

The ADC reading function reveals this fact.

unsigned int ADC_get_result(unsigned char channel)
{
 register unsigned int value = 0x0000;

 ADC_set_channel(channel);
 delay_ms(1);

 ADC_start_conversion;
 while(!check_ADC_flag);
 clear_ADC_flag;

 value = ((ADC_RES << 8) | ADC_RESL);

 return value;
}

In the main, ADC channels 0 and 1 are read and their readings are converted to voltage. The voltages

are shown on an LCD.

ADC_count = ADC_get_result(CH0);
voltage = (((float)ADC_count * 5.0) / 4095.0);
print_F(10, 0, voltage, 3);

ADC_count = ADC_get_result(CH1);
voltage = (((float)ADC_count * 5.0) / 4095.0);
print_F(10, 1, voltage, 3);

delay_ms(400);

ADC reading can be improved by applying several techniques like using filters, averaging technique

and so on. Special attention is needed while designing PCBs in order to minimize cross-talk between

channels and noise from onboard digital circuitry.

Generally, AD conversion should be fast, ADC I/O pins must be set in high impedance mode and AVCC

to VCC voltage difference should not be more than 0.3V.

Page | 51

Demo

Demo video link: https://youtu.be/i2MJ1OkbhwQ.

https://youtu.be/i2MJ1OkbhwQ

Page | 52

IAP/EEPROM

Storing calibration, configuration, setting data and some preset values are required in some devices

and so they need to be stored in memories that can be later modified if needed or else left alone. For

such cases, we would need either EEPROM or flash memories. Like many modern microcontrollers,

STC microcontrollers don’t come equipped with built-in EEPROM memory but through coding we can

store aforementioned data in internal flash memory through IAP/ISP technology.

Of course, there are ways to use external EEPROM and flash memories like AT24Cxx EERPOMS and

W25X16 but that would require external wiring and the use of communication pins. Having

flash/EEPROM memory embedded in the application chip allows us to simply avoid these and have

our microcontroller ready for fast deployment.

In this section, we would see how to use internal flash to store data.

Code

include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"

#define BASE_ADDRESS 0x0400

void setup(void);

void main(void)
{
 unsigned char i = 0;
 setup();

 LCD_goto(0, 0);
 LCD_putstr("R Addr:");
 LCD_goto(0, 1);
 LCD_putstr("R Data:");

 i = IAP_read(BASE_ADDRESS);
 delay_ms(10);

Page | 53

 print_I(11, 0, BASE_ADDRESS);
 print_C(14, 1, i);

 delay_ms(2000);

 if(i == 0)
 {
 LCD_clear_home();
 LCD_goto(0, 0);
 LCD_putstr("Performing Erase");
 LCD_goto(0, 1);
 LCD_putstr("....");
 IAP_erase(BASE_ADDRESS);
 delay_ms(1000);
 }

 LCD_clear_home();
 delay_ms(100);

 LCD_goto(0, 0);
 LCD_putstr("W Addr:");
 LCD_goto(0, 1);
 LCD_putstr("W Data:");

 i = (P1 & 0x03);
 IAP_write(BASE_ADDRESS, i);
 print_I(11, 0, BASE_ADDRESS);
 print_C(14, 1, i);
 delay_ms(2000);

 LCD_clear_home();
 delay_ms(100);

 LCD_goto(0, 0);
 LCD_putstr("R Addr:");
 LCD_goto(0, 1);
 LCD_putstr("R Data:");

 i = IAP_read(BASE_ADDRESS);
 delay_ms(10);
 print_I(11, 0, BASE_ADDRESS);
 print_C(14, 1, i);

 delay_ms(2000);

 while(1)
 {
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_div_1, MCLK_out_P54);

 P10_input_mode;
 P11_input_mode;

 LCD_init();
 LCD_clear_home();
}

Page | 54

Schematic

Explanation

The code in this rudimentary demo works by reading a single fixed location of internal flash, here
0x0400. An LCD display is used to show the read location and its content. If the content is 0 then an
erase is performed because it is assumed to be empty. After performing erase, the same location is
written. The write value is generated by reading the logic states of the lowermost bits (i.e., bit 0 and
1) of P1 port. After writing, the location is read again as to check if the data is properly saved. If the
micro is reset or if there is a power-down, the saved data is retained, confirming that indeed data has
been preserved in the internal flash memory.

IAP functionality utilizes the following three functions. As can be seen that these functions must follow
a sequence operation in order to enable access to internal flash.

unsigned char IAP_read(unsigned int address)
{
 unsigned char value = 0x00;

 IAP_CONTR = IAP_WT;
 IAP_CMD = IAP_read_command;
 IAP_address(address);
 IAP_trigger;
 nop();
 value = IAP_DATA;
 IAP_clear;

 return value;
}

void IAP_write(unsigned int address, unsigned char value)
{
 IAP_CONTR = IAP_WT;
 IAP_CMD = IAP_write_command;
 IAP_address(address);
 IAP_DATA = value;
 IAP_trigger;
 nop();
 IAP_clear;
}

void IAP_erase(unsigned int address)
{
 IAP_CONTR = IAP_WT;
 IAP_CMD = IAP_erase_command;
 IAP_address(address);
 IAP_trigger;
 nop();
 IAP_clear;
}

Page | 55

Some key points to note while using internal flash as EEPROM:

1. The flash memory of STC micro can be divided into sectors of 512 bytes.

2. Byte write or byte erase operations are not possible as these are done at sector level. This
means that to change one byte of a sector, we would have to totally erase and write that
sector.

3. Basing on point 2, it is better to use two sectors for one set of data. We can, then, maintain
wear-leveling and memory ring buffer.

4. We must use those locations of internal flash that won’t have any part of application code. As
with other microcontrollers, STC micros begin executing code from 0x0000 location of
memory. Thus, it is better to use locations at the last portion of internal flash memory.

5. Flash memory has an endurance of 100,000 cycles. Thus, frequent writes/erases must be
avoided. It is better to use a RAM buffer for applications that require frequent data storage.
By using such a technique, flash memory is only modified before a reset or power down event.
This is just like saving all your files before shutting down your PC. Most modern solid-state
drives (SSD) come with a DRAM cache and this has almost similar usage.

6. IAP size can be set by using STC programmer GUI.

Page | 56

Demo

Demo video link: https://youtu.be/sxiDfofhr2E.

https://youtu.be/sxiDfofhr2E

Page | 57

Timing-Related Hardware Overview

When it comes to timer-counters and time-related hardware, STC microcontrollers pack lot of punch.

There are five 16-bit timer-counters, a Programmable Counter Array (PCA) and an enhanced PWM

hardware peripheral. The timers are similar to the timers of standard 8051 microcontrollers. The rest

of the hardware peripherals are bonus features that are not typically available in traditional 8051s.

Timer-Counters

Timer-Counters T0 – T4 are the five 16-bit timer-counters. As with the timers of any MCU, timers of

STC microcontrollers can be employed for a number of tasks including time-base, timing events and

outputs, measuring intervals, etc. Timers of 8051 architecture-based microcontrollers are usually also

responsible for internal serial port (UART) hardware baud-rate generations and so is the case with STC

microcontrollers. Thus, these timers are very versatile.

The typical structure of timers of traditional 8051s looks like the block diagram shown below but it is

not completely the same for STC microcontrollers.

THx and TLx are cascaded counters that can be clocked using internal peripheral clock or externally

via specific timer input GPIO pins. The clock that would drive the counters can be optionally scaled but

unlike other microcontrollers the scaling is restricted to 1T or 12T, i.e., the driving source clock is either

divided by one or divided by a factor of 12. When a timer is internally clocked, it is said to be acting

like a timer and when it is clocked externally, it is said to be operating as a counter. All timers have

interrupt capabilities and always count to top value from either 0 or some predefined value. Timers

T0 and T1 are special timers while the rest are general purpose timers.

The timers can be operated in the following modes of operations:

Timer
16-bit Auto

Reload Mode
(Mode 0)

16-bit Non-
auto Reload

Mode
(Mode 1)

8-bit Auto
Reload Mode

(Mode 2)

16-bit Auto
Reload Mode
with Interrupt

(Mode 3)

Stop Mode
(Mode 3)

Timer 0 (T0) ✓ ✓ ✓ ✓

Timer 1 (T1) ✓ ✓ ✓ ✓

Timer 2 (T2) ✓

Timer 3 (T3) ✓

Timer 4 (T4) ✓

Page | 58

These modes of operations have similarities with standard 8051s but there are also some minor

differences.

• 16-bit Auto Reload Mode (Mode 0)

In auto-reload mode, a timer’s internal counter (TLx and THx) is loaded with some user-

defined value at the beginning and the timer is started. It will count from that set value to the

top value of 65535 (0xFFFF) and then overflow. After the overflow event, the user-defined

value is automatically reloaded to the timer’s counter and the process repeats. The overflow

event can generate an interrupt.

• 16-bit Non-auto Reload Mode (Mode 1)

Mode 1 is same as Mode 0 but the only difference between them is reloading feature. In Mode

1, a timer’s internal counter (TLx and THx) needs to be reloaded manually through coding.

• 8-bit Auto Reload Mode (Mode 2)

Mode 2 is similar to Mode 0. The differences are resolution and how the timer is reloaded. In

this mode, TLx is used as counter and THx is used as the buffer that with reload TLx when

overflow occurs.

• 16-bit Auto Reload Mode with Interrupt (Mode 3)

This mode is same as Mode 0 but in this mode, interrupt cannot be disabled. In Mode 0, we

have the option to either use timer interrupt or have it disabled.

• Stop Mode

Stop mode is only valid for Timer 1. Actually, all timers can be stopped somehow but entering

this mode will disable Timer 1.

Enhanced PWM Module

The enhanced PWM module of STC8A8K64S4A12 provides 8 channel 15-bit PWM outputs. This

module allows lot of advanced PWM features like complementary PWMs with dead-times, PWMs with

initial level settings, etc. There are options to use this module with internal ADC and there are options

to detect faults. This module is best suited for power control applications like inverters, battery

chargers, switch-mode power supplies (SMPS), etc. Lastly, this module can operate independently

without the need of help from other internal timer modules.

Page | 59

Programmable Counter Array (PCA)

STC8A8K64S4A12’s programmable array counter is an interesting and rare hardware peripheral. PCA

is not seen in most microcontrollers. PCA basically extends PWM capabilities of STC8A8K64S4A12

while including input capture peripherals, special outputs and robust interrupt capabilities. PCA-based

PWMs are of either 6-bit, 7-bit, 8-bit and 10-bit resolution and can be considered as general-purpose

PWMs. The PCA module can be considered as an additional built-in timer peripheral as it can operate

independently just like the PWM module.

In STC8A8K64S4A12, there are four PCA groups – CCP0, CCP1, CCP2 and CCP3 that are dependent on

a central 16-bit counter and configuration assets. CCP0, CCP1, CCP2 and CCP3 can be inputs or outputs

depending on the mode of operation of PCA module itself. The counter can be clocked with a number

of clock sources as shown in the block diagram.

Other Timers

Apart from all aforementioned peripherals, STC8A8K64S4A12 packs a wakeup timer and a watchdog

timer. Wakeup timer can bring out a STC8A8K64S4A12 micro from low power sleep mode after fixed

time intervals. Watchdog timer in STC8A8K64S4A12 is just like the watchdog timer of any other

microcontroller and is mainly intended for resetting should there be an unforeseen software

loop/error. These timers do not have alternative usage.

Page | 60

Using Timer 4 as Time-base Generator

The very basic use of a timer is to use it for time-base generation. By time-base generation, I mean

that we use a timer as a free-running timer and without using any of its interrupts.

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);

void main(void)
{
 setup();

 while(1)
 {
 if(TMR4_get_counter() >= 0x9E58)
 {
 P55_high;
 }
 else
 {
 P55_low;
 }
 };
}

Page | 61

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 24, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P55_open_drain_mode;

 TMR4_setup(TMR4_sysclk, \
 TMR4_clk_prescalar_12T, \
 TMR4_no_clk_out);

 TMR4_load_counter_16(0x3CB0);
 TMR4_start;
}

Schematic

Explanation

For this demo, onboard LED is used as the demo is a simple LED blinking. The desired LED blink rate is

1.67Hz (about 600ms).

The system clock is set to 1MHz. Everything related to internal hardware timing is dependent on

system clock and so its selection is very important. The system clock is set to 1MHz as the required

blink rate is very small. Every system clock tick is, therefore, 1µs.

CLK_set_sys_clk(IRC_24M, 24, MCLK_SYSCLK_no_output, MCLK_out_P54);

Now let’s see how the timer is configured. Firstly, timer 4 is used as it is one of the simplest timers.

Obviously, this timer is working in 16-bit auto-reload mode (Mode 0) as no other mode of operation

is available for it.

TMR4_setup(TMR4_sysclk, \
 TMR4_clk_prescalar_12T, \
 TMR4_no_clk_out);

TMR4_load_counter_16(0x3CB0);
TMR4_start;

Page | 62

As we can see the timer is fed with internal system clock (1MHz). This is further scaled down by a

factor of 12, i.e., the timer is ticking at:

1000000 𝐻𝑧

12
 = 83333.33Hz or 12µs

To achieve 600ms (1.67Hz) period, we would need:

600 × 10−3 s

12 × 10−6 s
 = 50000 timer counts or ticks

All 16-bit timers start counting from a bottom value to a fixed top value of 65535 (0xFFFF)

counts. A timer’s internal counter overflows after exceeding the top value and then rolls over

or repeats counting from its bottom value. The bottom value is 0 (0x0000) unless some other

value is assigned in the code. Thus, unlike the top value, the bottom value can be changed. In

this example, the bottom value is 15536 (0x3CB0). This, in effect, help us achieve 50000

counts.

65536 – 15536 = 50000 counts

Now, we want to equally divide the on and off times of the LED and so the 50000 counts are

divided into two halves, each 25000 counts individually. Thus, in the main loop, the timer’s

counter count is polled.

if(TMR4_get_counter() >= 0x9E58)
{
 P55_high;
}
else
{
 P55_low;
}

If the count is greater than or equal to 40536 (0x9E58), P55 is held high or else it is held low. Thus,

from 15536 count to 40535 count (40535 – 15536 = 24999), the pin’s state is low and from 40536

count to 65535 count (65535 – 40536 = 24999), the pin state is high.

Page | 63

Demo

Demo video link: https://youtu.be/yAiFfGea_Ac.

https://youtu.be/yAiFfGea_Ac

Page | 64

Timer 1 as a Counter

Apart from timing events, the other role of timers is to count pulses. Pulse counting has number of

applications like motor speed control, object counting, frequency measurements, encoder counting,

etc.

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);

void main(void)
{
 setup();

 while(1)
 {
 if(TMR1_get_counter() >= 32768)
 {
 P55_high;
 }
 else
 {
 P55_low;
 }
 };
}

Page | 65

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P34_push_pull_mode;

 P35_input_mode;

 P55_open_drain_mode;

 TMR1_setup(TMR1_16_bit_non_auto_reload, \
 TMR1_ext_T1_P35_clk, \
 TMR1_clk_prescalar_12T, \
 TMR1_int_gate, \
 TMR1_P34_clk_out);

 TMR1_load_counter_8(0x00, 0x00);

 TMR1_start;
}

Schematic

Explanation

This example is same as the previous timer example, the only difference is the clock source of the

timer involved here. Timer 1 is used and it is externally clocked by using a signal generator. In this

example, the blinking rate of the onboard LED changes with the clock speed of the timer.

First let’s see how the timer is set up.

TMR1_setup(TMR1_16_bit_non_auto_reload, \
 TMR1_ext_T1_P35_clk, \
 TMR1_clk_prescalar_12T, \
 TMR1_int_gate, \
 TMR1_P34_clk_out);

TMR1_load_counter_8(0x00, 0x00);

TMR1_start;

Here, we can, firstly, see that the timer is set in non-auto reload mode. This means that timer needs

periodic reloads after overflow or else it will restart counting from 0. In our case, this won’t matter

because we want the timer to count from 0 after overflow. Secondly, we can see that the timer is

Page | 66

externally clocked and this is achieved by feeding clock pulses to P3.5 (T1) GPIO pin. Since the timer is

externally clocked, it doesn’t matter what system clock settings are. The next thing to note is the

timer’s clock prescalar. This is needed because we want to visually see the outcome with LEDs. If the

LEDs blink too fast, we won’t not be able to realize what is going on. Lastly, internal gating is used

because we don’t the timer to depend on other hardware events and we want to get timer output.

Timer 1 will toggle the logic state of P3.4 (T1CLKO) GPIO pin when it overflows. Both GPIO pins P3.4

and P3.5 need to configured.

P34_push_pull_mode;

P35_input_mode;

State of P5.5 LED changes according to the value of timer’s internal counter. For one half of the 16-bit

count the LED is held low and for the other half it is held high.

if(TMR1_get_counter() >= 32768)
{
 P55_high;
}

else
{
 P55_low;
}

Thus, in the main, this is only job done. Rate of blinking depends on external clock speed. The higher

the clock frequency, the higher is the blinking rate.

Demo

Demo video link: https://youtu.be/GIA7gT3RxY4.

https://youtu.be/GIA7gT3RxY4

Page | 67

Using Timer 2 to Multiplex Seven Segment Displays

Rather than polling, a better way to use timers is to use their interrupts. Timer overflow interrupt is

particularly useful for timing event accurately. Timer overflow interrupt will periodically interrupt

main tasks and can perform certain things inside the interrupt and then get back to main tasks. In this

way, several tasks will apparently seem to occur concurrently. Multiplexing seven segment displays is

one such example. These displays need periodic scanning, multiplexing and updating. If these tasks

are done swiftly and in short duration, human eyes can be tricked. If a CPU is occupied doing these

tasks alone then it would not be able to do other tasks. If the tasks of seven segment displays are put

inside a timer interrupt, the CPU can do other tasks in other interrupts and main code as seven

segment displays need only periodic attention and not all code processing is spent on the displays

alone.

Code

#include "STC8xxx.h"
#include "BSP.h"

#define DAT_pin_HIGH P41_high
#define DAT_pin_LOW P41_low

#define CLK_pin_HIGH P42_high
#define CLK_pin_LOW P42_low

#define refresh_time_in_us 315

Page | 68

#define max_tmr_cnt 0xFFFF
#define tmr_val (max_tmr_cnt - refresh_time_in_us)

const unsigned char pos[0x08] =

{
 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
};

const unsigned char num[0x0A] =
{
 0x03, 0x9F, 0x25, 0x0D, 0x99, 0x49, 0x41, 0x1F, 0x01, 0x09
};

unsigned char i = 0x00;

signed int value_1 = 0;
signed int value_2 = 0;

void setup(void);
void Write_74HC164(unsigned char val, unsigned char seg);

void ADC_ISR(void)
interrupt 5
{
 value_1 = ((ADC_RES << 8) | ADC_RESL);
 value_2 = ((value_1 * 5000.0) / 4096.0);
 clear_ADC_flag;
}

void TMR_2_ISR(void)
interrupt 12
{
 switch(i)
 {
 case 0:
 {
 Write_74HC164(num[(value_1 / 1000)], pos[3]);
 break;
 }

 case 1:
 {
 Write_74HC164((num[((value_1 % 1000) / 100)]), pos[2]);
 break;
 }

 case 2:
 {
 Write_74HC164(num[((value_1 % 100) / 10)], pos[1]);
 break;
 }

 case 3:
 {
 Write_74HC164(num[(value_1 % 10)], pos[0]);
 break;
 }

 case 4:
 {
 Write_74HC164(num[(value_2 / 1000)] & 0xFE, pos[7]);
 break;
 }

 case 5:
 {
 Write_74HC164((num[((value_2 % 1000) / 100)]), pos[6]);
 break;
 }

 case 6:
 {
 Write_74HC164(num[((value_2 % 100) / 10)], pos[5]);
 break;
 }

 case 7:
 {

Page | 69

 Write_74HC164(num[(value_2 % 10)], pos[4]);
 break;
 }
 }

 i++;

 if(i >= 8)
 {
 i = 0;
 }
 clear_TMR_2_overflow_flag;
}

void main(void)
{
 setup();

 while(1)
 {
 ADC_set_channel(CH15);
 delay_ms(10);
 ADC_start_conversion;
 delay_ms(400);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P41_push_pull_mode;
 P42_push_pull_mode;

 ADC_enable;
 ADC_result_format_right_aligned;
 ADC_set_conversion_speed(ADC_conv_128_CLKs);
 _enable_ADC_interrupt;

 TMR2_setup(TMR2_sysclk, TMR2_clk_prescalar_12T);
 TMR2_load_counter_16(tmr_val);
 TMR2_start;
 _enable_TMR_2_interrupt;
 _enable_global_interrupt;
}
void Write_74HC164(unsigned char val, unsigned char seg)
{
 unsigned char s = 0x10;
 unsigned int temp = 0x0000;

 temp = (unsigned int)seg;
 temp <<= 8;
 temp |= (unsigned int)val;

 while(s > 0)
 {
 if((temp & 0x0001) != 0x0000)
 {
 DAT_pin_HIGH;
 }
 else
 {
 DAT_pin_LOW;
 }

 CLK_pin_HIGH;
 temp >>= 1;

 s--;
 CLK_pin_LOW;
 }
}

Page | 70

Schematic

Explanation

For demonstrating timer interrupt and seven segment displays, I used a simple dual 4-digit seven

segment displays. It is made with a set of 74HC164 Serial-In-Parallel-Out (SPIO) shift register. In order

to use it in real-time, its displays need to be scanned and updated at a fast rate without affecting other

tasks.

This demo is a very important one as here multiple interrupts are employed and literally there is

nothing inside the main loop. Things are done in such a way as if everything is parallelly done and in

real-time.

Firstly, the system clock and GPIOs are set. The system clock is set to 12 MHz. P4.1 and P4.2 are GPIOs

that are used for driving the display. These drive data and clock lines of the display respectively.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

P41_push_pull_mode;
P42_push_pull_mode;

ADC setup is as simple as the past ADC example. The conversion rate is set to about 3 kHz and the ADC

interrupt is enabled. Note no external ADC pin is used as the goal here is to read the internal reference

voltage source, i.e., ADC Channel 15.

ADC_enable;
ADC_result_format_right_aligned;
ADC_set_conversion_speed(ADC_conv_128_CLKs);
_enable_ADC_interrupt;

ADC interrupt is triggered when a conversion is completed. Inside this interrupt all we have to do is to

read the ADC and clear the AD conversion completion flag.

void ADC_ISR(void)
interrupt 5
{
 value_1 = ((ADC_RES << 8) | ADC_RESL);
 value_2 = ((value_1 * 5000.0) / 4096.0);
 clear_ADC_flag;
}

Page | 71

Timer 2 is used in this example and so let us now see how it is configured. There are eight seven

segment displays and we would want them to be multiplexed quickly in order to make them appear

to update simultaneously. We cannot afford to stay long for each display. Thus, this task should be

completed within 2 – 3ms time. Due to this reason, the timer is set to interrupt every 315µs. The total

time for all displays is therefore about 2.52ms (8 × 0.315ms).

#define refresh_time_in_us 315
#define max_tmr_cnt 0xFFFF
#define tmr_val (max_tmr_cnt - refresh_time_in_us)

....

TMR2_setup(TMR2_sysclk, TMR2_clk_prescalar_12T);
TMR2_load_counter_16(tmr_val);
TMR2_start;
_enable_TMR_2_interrupt;

Timer 2 is a 16-bit timer with auto-reload feature. In this demo, it is clocked internally with the 12 MHz

system clock. This clock is further scaled down by a factor of 12 and so the timer’s ticks have a

frequency of 1 MHz, i.e., the timer ticks are 1µs apart.

𝑇𝑖𝑚𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑙𝑜𝑐𝑘

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟
=

12 𝑀𝐻𝑧

12
= 1 𝑀𝐻𝑧

𝑇𝑖𝑚𝑒𝑟 𝑇𝑖𝑐𝑘 =
1

𝑇𝑖𝑚𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1

1 𝑀𝐻𝑧
= 1µ𝑠

We want the timer to interrupt every 315µs and so the timer is loaded with a value of 65220 since all

16-bit timers count up to 65535.

𝑇𝑖𝑚𝑒𝑟𝐿𝑜𝑎𝑑𝑉𝑎𝑙𝑢𝑒 = 𝑇𝑖𝑚𝑒𝑟𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒 − (
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑇𝑖𝑚𝑒𝑟 𝑇𝑖𝑐𝑘
)

 = 65535 − (
315µ𝑠

1µ𝑠
) = 65520

Lastly, the timer is started with its interrupt enabled.

Page | 72

Inside the timer interrupt the displays are updated by writing to the 74HC164 chips and clearing the

timer overflow interrupt flag.

void TMR_2_ISR(void)
interrupt 12
{
 switch(i)
 {
 case 0:
 {
 Write_74HC164(num[(value_1 / 1000)], pos[3]);
 break;
 }

 case 1:
 {
 Write_74HC164((num[((value_1 % 1000) / 100)]), pos[2]);
 break;
 }

 case 2:
 {
 Write_74HC164(num[((value_1 % 100) / 10)], pos[1]);
 break;
 }

 case 3:
 {
 Write_74HC164(num[(value_1 % 10)], pos[0]);
 break;
 }

 case 4:
 {
 Write_74HC164(num[(value_2 / 1000)] & 0xFE, pos[7]);
 break;
 }

 case 5:
 {
 Write_74HC164((num[((value_2 % 1000) / 100)]), pos[6]);
 break;
 }

 case 6:
 {
 Write_74HC164(num[((value_2 % 100) / 10)], pos[5]);
 break;
 }

 case 7:
 {
 Write_74HC164(num[(value_2 % 10)], pos[4]);
 break;
 }
 }

 i++;

 if(i >= 8)
 {
 i = 0;
 }

 clear_TMR_2_overflow_flag;
}

Page | 73

The function below is the function for writing the 74HC164 shift-register ICs. Since the shift-registers

are cascaded and we need them to work simultaneously, it is better to bit-bang seven segment data

as 16-bit chunks – each word consisting of segment position and segment value data.

void Write_74HC164(unsigned char val, unsigned char seg)
{
 unsigned char s = 0x10;
 unsigned int temp = 0x0000;

 temp = (unsigned int)seg;
 temp <<= 8;
 temp |= (unsigned int)val;

 while(s > 0)
 {
 if((temp & 0x0001) != 0x0000)
 {
 DAT_pin_HIGH;
 }
 else
 {
 DAT_pin_LOW;
 }

 CLK_pin_HIGH;

 temp >>= 1;
 s--;

 CLK_pin_LOW;
 }
}

Note interrupt priorities are not changed and are left in their default conditions.

In the main, the channel to be read is selected and AD conversion is triggered. This operation is cycled

every 400ms. Channel 15 is read here. Channel 15 is the internal reference voltage source. The internal

reference voltage source has a typical value of 1.344V. The seven segment displays show ADC counts

and voltage value.

ADC_set_channel(CH15);
delay_ms(10);
ADC_start_conversion;
delay_ms(400);

Page | 74

Demo

Demo video link: https://youtu.be/gFKg9aYkMrM.

https://youtu.be/gFKg9aYkMrM

Page | 75

Timer 3 as Real Time Clock & Calendar (RTCC)

Since timers can time event precisely, we can use timers for time keeping too. Although there is no

dedicated real-time clock-calendar (RTCC) hardware in STC8A8K64S4A12, we can make one by using

a timer and some coding.

Code

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"

#define required_time 1000
#define max_tmr_cnt 0xFFFF
#define tmr_val (max_tmr_cnt - required_time)

#define PM 0
#define AM 1

#define ETR 1
#define INC 2
#define DEC 3
#define ESC 4
#define NON 0

#define ETR_button !P10_get_input
#define INC_button !P11_get_input
#define DEC_button !P12_get_input
#define ESC_button !P13_get_input

unsigned char dow = 1;
unsigned char s = 10;
unsigned char hr = 10;
unsigned char min = 10;
unsigned char date = 1;
unsigned char month = 1;
unsigned char toggle = 0;
unsigned char leap_year = 0;
unsigned char ampm = AM;

unsigned int ms = 0;
unsigned int year = 2000;

void setup(void);
void LCD_print_value(unsigned char x_pos, unsigned char y_pos, unsigned char value);
void LCD_print_int_value(unsigned char x_pos, unsigned char y_pos, unsigned int value);
void display_time(void);
void AM_PM_disp(unsigned char state);
void dow_disp(unsigned char dow);
unsigned char get_buttons(void);
unsigned char set_value(unsigned char x_pos, unsigned char y_pos, signed char value, unsigned char max, unsig
ned char min, unsigned char type);

Page | 76

void setup_RTC(void);

void TMR_3_ISR(void)
interrupt 19
{
 ms++;
 if(ms > 999)
 {
 s++;
 ms = 0;
 toggle ^= 0x01;
 P54_toggle;
 }

 if(s > 59)
 {
 s = 0;
 min++;

 if(min > 59)
 {
 min = 0;
 hr++;

 if(hr > 12)
 {
 hr = 1;
 }

 if((hr == 12) && (min == 0) && (s == 0))
 {
 ampm ^= 1;

 if(ampm == AM)
 {
 date++;
 dow++;
 }

 if(dow > 7)
 {
 dow = 1;
 }

 if((month == 1) || (month == 3) || (month == 5) || (month == 7) || (month == 8) || (month == 10) || (
month == 12))
 {
 if(date > 31)
 {
 date = 1;
 month++;
 }
 }

 else if((month == 4) || (month == 6) || (month == 9) || (month == 11))
 {
 if(date > 30)
 {
 date = 1;
 month++;
 }
 }

 else
 {
 if((year % 4) == 0)
 {
 if((year % 100) == 0)
 {
 if((year % 400) == 0)
 {
 leap_year = 1;
 }

 else
 {
 leap_year = 0;
 }

Page | 77

 }

 else
 {
 leap_year = 1;
 }
 }

 else
 {
 leap_year = 0;
 }

 if((leap_year) && (date > 29))
 {
 date = 1;
 month++;
 }

 else if((!leap_year) && (date > 28))
 {
 date = 1;
 month++;
 }
 }

 if(month > 12)
 {
 month = 1;
 year++;
 }
 }
 }
 }

 clear_TMR_3_overflow_flag;
}

void main(void)
{
 setup();

 while(1)
 {
 if(get_buttons() == ESC)
 {
 while(get_buttons() == ESC);
 setup_RTC();
 }
 else
 {
 display_time();
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P10_input_mode;
 P11_input_mode;
 P12_input_mode;
 P13_input_mode;

 P54_push_pull_mode;

 LCD_init();
 LCD_clear_home();

 TMR3_setup(TMR3_sysclk, TMR3_clk_prescalar_12T, TMR3_no_clk_out);
 TMR3_load_counter_16(tmr_val);
 TMR3_start;
 _enable_TMR_3_interrupt;
 _enable_global_interrupt;
}

Page | 78

void LCD_print_value(unsigned char x_pos, unsigned char y_pos, unsigned char value)
{
 LCD_goto(x_pos, y_pos);
 LCD_putchar((value / 10) + 0x30);
 LCD_goto((x_pos + 1), y_pos);
 LCD_putchar((value % 10) + 0x30);
}

void LCD_print_int_value(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
 unsigned char temp = 0x00;

 temp = (value / 100);
 LCD_print_value(x_pos, y_pos, temp);

 temp = (value % 100);
 LCD_print_value((x_pos + 2), y_pos, temp);

}

void display_time(void)
{
 LCD_print_value(2, 0, hr);
 LCD_print_value(5, 0, min);
 LCD_print_value(8, 0, s);

 switch(toggle)
 {
 case 1:
 {
 LCD_goto(4, 0);
 LCD_putchar(':');
 LCD_goto(7, 0);
 LCD_putchar(':');
 break;
 }
 default:
 {
 LCD_goto(4, 0);
 LCD_putchar(' ');
 LCD_goto(7, 0);
 LCD_putchar(' ');
 break;
 }
 }

 AM_PM_disp(ampm);
 dow_disp(dow);

 LCD_print_value(6, 1, date);

 LCD_goto(8, 1);
 LCD_putchar('.');
 LCD_print_value(9, 1, month);

 LCD_goto(11, 1);
 LCD_putchar('.');
 LCD_print_int_value(12, 1, year);
}

void dow_disp(unsigned char dow)
{
 LCD_goto(0, 1);

 switch(dow)
 {
 case 1:
 {
 LCD_putstr("MON");
 break;
 }
 case 2:
 {

Page | 79

 LCD_putstr("TUE");
 break;
 }
 case 3:
 {
 LCD_putstr("WED");
 break;
 }
 case 4:
 {
 LCD_putstr("THR");
 break;
 }
 case 5:
 {
 LCD_putstr("FRI");
 break;
 }
 case 6:
 {
 LCD_putstr("SAT");
 break;
 }
 case 7:
 {
 LCD_putstr("SUN");
 break;
 }
 default:
 {
 LCD_putstr(" ");
 break;
 }
 }
}

void AM_PM_disp(unsigned char state)
{
 LCD_goto(12, 0);

 switch(state)
 {
 case AM:
 {
 LCD_putstr("AM");
 break;
 }
 default:
 {
 LCD_putstr("PM");
 break;
 }
 }
}

unsigned char get_buttons(void)
{
 if(ETR_button)
 {
 return ETR;
 }

 else if(INC_button)
 {
 return INC;
 }

 else if(DEC_button)
 {
 return DEC;
 }

 else if(ESC_button)
 {
 return ESC;
 }

Page | 80

 else
 {
 return NON;
 }
}

unsigned char set_value(unsigned char x_pos, unsigned char y_pos, signed char value, unsigned char max, unsig
ned char min, unsigned char type)
{
 unsigned char tgl = 0;

 while(1)
 {
 tgl ^= 0x01;
 delay_ms(90);

 if(get_buttons() == INC)
 {
 value++;
 }

 if(value > max)
 {
 value = min;
 }

 if(get_buttons() == DEC)
 {
 value--;
 }

 if(value < min)
 {
 value = max;
 }

 switch(type)
 {
 case 1:
 {
 switch(tgl)
 {
 case 1:
 {
 LCD_print_value(x_pos, y_pos, value);
 break;
 }

 default:
 {
 LCD_goto(x_pos, y_pos);
 LCD_putstr(" ");
 break;
 }
 }

 break;
 }

 case 2:
 {
 switch(tgl)
 {
 case 1:
 {
 AM_PM_disp(value);
 break;
 }

 default:
 {
 LCD_goto(12, 0);
 LCD_putstr(" ");
 break;
 }
 }

Page | 81

 break;
 }

 default:
 {
 switch(tgl)
 {
 case 1:
 {
 dow_disp(value);
 break;
 }
 default:
 {
 dow_disp(0);
 break;
 }
 }
 break;
 }
 }

 if((get_buttons() == ETR) && (tgl == 1))
 {
 return value;
 }
 };
}

void setup_RTC(void)
{
 unsigned int yr1 = 0;
 unsigned int yr2 = 0;

 TMR3_stop;
 _disable_TMR_3_interrupt;

 yr1 = (year / 100);
 yr2 = (year % 100);

 hr = set_value(2, 0, hr, 12, 1, 1);
 delay_ms(200);
 min = set_value(5, 0, min, 59, 0, 1);
 delay_ms(200);
 s = set_value(8, 0, s, 59, 0, 1);
 delay_ms(200);
 ampm = set_value(12, 0, ampm, 1, 0, 2);
 delay_ms(200);
 dow = set_value(0, 1, dow, 7, 1, 0);
 delay_ms(200);
 date = set_value(6, 1, date, 31, 1, 1);
 delay_ms(200);
 month = set_value(9, 1, month, 12, 1, 1);
 delay_ms(200);
 yr1 = set_value(12, 1, yr1, 99, 0, 1);
 delay_ms(200);
 yr2 = set_value(14, 1, yr2, 99, 0, 1);
 delay_ms(200);

 year = ((yr1 * 100) + yr2);

 if((month == 1) || (month == 3) || (month == 5) || (month == 7) || (month == 8) || (month == 10) || (month
== 12))
 {
 if(date > 31)
 {
 date = 1;
 }
 }

 else if((month == 4) || (month == 6) || (month == 9) || (month == 11))
 {
 if(date > 30)
 {
 date = 1;
 }
 }

Page | 82

 else
 {
 if((year % 4) == 0)
 {
 if((year % 100) == 0)
 {
 if((year % 400) == 0)
 {
 leap_year = 1;
 }

 else
 {
 leap_year = 0;
 }
 }

 else
 {
 leap_year = 1;
 }
 }

 else
 {
 leap_year = 0;
 }

 if((leap_year) && (date > 29))
 {
 date = 1;
 }

 else if((!leap_year) && (date > 28))
 {
 date = 1;
 }
 }

 ms = 0;
 TMR3_setup(TMR3_sysclk, TMR3_clk_prescalar_12T, TMR3_no_clk_out);
 TMR3_load_counter_16(tmr_val);
 TMR3_start;
 _enable_TMR_3_interrupt;
}

Schematic

Page | 83

Explanation

For making a RTCC, we would need a display and a set of buttons for displaying and setting time

respectively. The system clock in this example is set to 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

P10_input_mode;
P11_input_mode;
P12_input_mode;
P13_input_mode;

P54_push_pull_mode;

LCD_init();
LCD_clear_home();

Timer 3 is used in example. It is driven with the 12MHz system clock and this clock is precaled by 12.

Thus, the timer is ticking at 1MHz speed.

TMR3_setup(TMR3_sysclk, TMR3_clk_prescalar_12T, TMR3_no_clk_out);
TMR3_load_counter_16(tmr_val);
TMR3_start;
_enable_TMR_3_interrupt;
_enable_global_interrupt;

𝑇𝑖𝑚𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑙𝑜𝑐𝑘

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟
=

12 𝑀𝐻𝑧

12
= 1 𝑀𝐻𝑧

𝑇𝑖𝑚𝑒𝑟 𝑇𝑖𝑐𝑘 =
1

𝑇𝑖𝑚𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1

1 𝑀𝐻𝑧
= 1µ𝑠

We want the timer to interrupt every 1000µs (1ms) and so the timer is loaded with a value of 64535.

Timer 3 is same as Timer2 and so the same concepts are used.

𝑇𝑖𝑚𝑒𝑟𝐿𝑜𝑎𝑑𝑉𝑎𝑙𝑢𝑒 = 𝑇𝑖𝑚𝑒𝑟𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒 − (
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑇𝑖𝑚𝑒𝑟 𝑇𝑖𝑐𝑘
)

 = 65535 − (
1000µ𝑠

1µ𝑠
) = 64535

Lastly, the timer is started with its interrupt enabled.

In order to ensure accuracy of timing the following should be maintained as much as possible:

• Clock source must be as precise as possible. I recommend using a temperature-compensated

crystal oscillator (TCXO).

• Precalar should be as less as possible. This is not possible here with STC8A8K64S4A12 though

due to hardware limitations.

• Accuracy can be increased by synchronizing time with GPS at periodic interval. This can be

achieved by adding extra codes and synchronizing with a GPS receiver or NTP server.

Page | 84

Since the timer is now ticking at 0.001ms rate and 1 second equals 1000ms, a variable called “ms” is

incremented at every timer overflow interrupt. When this get larger than 999, one second is

registered. In similar way, minute, hour, day, month and year are increased. The process is just like a

software timer implementation. At the end of the interrupt, timer overflow flag is cleared.

void TMR_3_ISR(void)
interrupt 19
{
 ms++;
 if(ms > 999)
 {
 s++;
 ms = 0;
 toggle ^= 0x01;
 P54_toggle;
 }

 if(s > 59)
 {
 s = 0;
 min++;

 if(min > 59)
 {
 min = 0;
 hr++;

 if(hr > 12)
 {
 hr = 1;
 }

 if((hr == 12) && (min == 0) && (s == 0))
 {
 ampm ^= 1;

 if(ampm == AM)
 {
 date++;
 dow++;
 }

 if(dow > 7)
 {
 dow = 1;
 }

 if((month == 1) || (month == 3) || (month == 5) || (month == 7) || (month == 8) || (month == 10) \\
 || (month == 12))
 {
 if(date > 31)
 {
 date = 1;
 month++;
 }
 }

 else if((month == 4) || (month == 6) || (month == 9) || (month == 11))
 {
 if(date > 30)
 {
 date = 1;
 month++;
 }
 }

 else
 {
 if((year % 4) == 0)
 {
 if((year % 100) == 0)
 {
 if((year % 400) == 0)
 {
 leap_year = 1;
 }

Page | 85

 else
 {
 leap_year = 0;
 }
 }

 else
 {
 leap_year = 1;
 }
 }

 else
 {
 leap_year = 0;
 }

 if((leap_year) && (date > 29))
 {
 date = 1;
 month++;
 }

 else if((!leap_year) && (date > 28))
 {
 date = 1;
 month++;
 }
 }

 if(month > 12)
 {
 month = 1;
 year++;
 }
 }
 }
 }

 clear_TMR_3_overflow_flag;
}

In the main, either we can set time or read it.

if(get_buttons() == ESC)
{
 while(get_buttons() == ESC);
 setup_RTC();
}
else
{
 display_time();
}

Page | 86

Demo

Demo video link: https://youtu.be/DwMn9KGtnKs.

https://youtu.be/DwMn9KGtnKs

Page | 87

NEC IR Remote Decoding with Timer 0 and External Interrupt

In many projects, we need to control devices remotely, for example a remote-controlled appliance

and so it becomes necessary to incorporate some form of remote controller. Infrared (IR) remote

controllers are cheap and are widely used as remote controllers in many devices.

Data to be sent from a remote IR transmitter to a receiver is transmitted by modulating it with a carrier

wave having frequency between 30kHz to 40kHz. Modulation technique ensures safety from data

corruption over long-distance transmissions. An IR receiver at the receiving end picks up and

demodulates the sent out modulated data and outputs a stream of pulses. These pulses can vary in

terms of pulse widths/timing/position/phase and these variable properties carry the data. Pulse

properties are defined by a set of rules called protocol. Decoding the pulses as per protocol help in

retrieving information. In most micros, there is no dedicated hardware for decoding IR remote

protocols. A micro that needs to decode IR remote data also does not know when it will be receiving

an IR burst. Thus, a combination of external interrupt and timer is needed for decoding IR data.

In this segment, we will see how we can use an external interrupt and a timer to easily decode a NEC

IR remote. This same method can be applied to any IR remote controller. At this stage, I recommend

studying NEC IR protocol from here. SB-Project’s website is an excellent page for IR remote-related

info.

https://www.sbprojects.net/knowledge/ir/nec.php

Page | 88

Code

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"

#define sync_high 5850 //approx 1.3 * 4500us
#define sync_low 3150 //approx 0.7 * 4500us
#define one_high 2200 //approx 1.3 * (2250 - 562.5)us
#define one_low 1180 //approx 0.7 * (2250 - 562.5)us
#define zero_high 732 //approx 1.3 * (1125 - 562.5)us
#define zero_low 394 //approx 0.7 * (1125 - 562.5)us

unsigned char bits = 0x00;
unsigned char received = 0x00;

unsigned int frames[33];

void setup(void);
void erase_frames(void);
unsigned char decode(unsigned char start_pos, unsigned char end_pos);
void decode_NEC(unsigned char *addr, unsigned char *cmd);

void EXT_0_ISR(void)
interrupt 0
{
 frames[bits] = TMR0_get_counter();
 bits++;
 TMR0_start;

 if(bits >= 33)
 {
 received = 1;
 _disable_global_interrupt;
 TMR0_stop;
 }

 TMR0_load_counter_16(0x0000);
}

void main(void)
{
 unsigned char addr = 0x00;
 unsigned char cmd = 0x00;

 setup();

 LCD_goto(1, 0);
 LCD_putstr("NEC IR Decoder");
 LCD_goto(0, 1);
 LCD_putstr("Adr Cmd");

 while(1)
 {
 if(received != FALSE)
 {
 decode_NEC(&addr, &cmd);

 print_C(3, 1, addr);
 print_C(12, 1, cmd);

 delay_ms(100);

 erase_frames();
 _enable_global_interrupt;
 }
 };
}

Page | 89

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_div_1, MCLK_SYSCLK_no_output);

 erase_frames();

 TMR0_setup(TMR0_16_bit_non_auto_reload, \
 TMR0_sysclk, \
 TMR0_clk_prescalar_12T, \
 TMR0_ext_gate, \
 TMR0_no_clk_out);

 EXT_0_priority_0;
 EXT_0_falling_edge_detection_only;
 _enable_EXT_0_interrupt;
 _enable_global_interrupt;

 LCD_init();
 LCD_clear_home();
}

void erase_frames(void)
{
 for(bits = 0; bits < 33; bits++)
 {
 frames[bits] = 0x0000;
 }

 TMR0_load_counter_16(0x0000);

 received = 0;
 bits = 0;
}

unsigned char decode(unsigned char start_pos, unsigned char end_pos)
{
 unsigned char value = 0;

 for(bits = start_pos; bits <= end_pos; bits++)
 {
 value <<= 1;

 if((frames[bits] >= one_low) && (frames[bits] <= one_high))
 {
 value |= 1;
 }

 else if((frames[bits] >= zero_low) && (frames[bits] <= zero_high))
 {
 value |= 0;
 }

 else if((frames[bits] >= sync_low) && (frames[bits] <= sync_high))
 {
 return 0xFF;
 }
 }

 return value;
}

void decode_NEC(unsigned char *addr, unsigned char *cmd)
{
 *addr = decode(2, 9);
 *cmd = decode(18, 25);
}

Page | 90

Schematic

Explanation

A NEC transmission sends out a total of 33 pulses. The first one is a sync pulse and the rest 32 contain
address and command info. These 32 address and command bits can be divided into 2 groups. The
first 16 bits is one group that contain address and inverted address while the second group of 16-bits
contain command and inverted command. The non-inverted signals can be used against the inverted
ones for checking data integrity.

We already know that IR data is received as a steam of pulses. Pulses represent sync bit or ones and
zeros. In case of NEC IR protocol, the pulses have variable widths. Sync bit is characterized by a pulse
of 9ms high and 4.5ms low – the total pulse time is 13.5ms. Check the timing diagram shown below.
Please note that in this timing diagram the blue pulses are from the transmitter and the yellow ones
are those received by the receiver. Clearly the pulse streams are inverted. This inversion is done at the
IR receiver side.

Page | 91

Logic one is represented by a pulse of 560μs high time and 2.25ms of low time – the total pulse time

is 2.81ms. Likewise, logic zero is represented by a pulse of 560μs high time and 1.12ms of low time –

the total pulse time is 1.68ms.

These timings can vary up to 30% of their ideal values due to a number of factors like medium,

temperature, reflections, etc.

Now let’s look at the coding. Firstly, the system clock is set to 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_div_1, MCLK_SYSCLK_no_output);

External interrupt is set up to detect falling edges. This is a crucial part in detecting IR pulses because

using this interrupt allows us to do other tasks and leave the MCU free for other tasks.

EXT_0_priority_0;
EXT_0_falling_edge_detection_only;
_enable_EXT_0_interrupt;
_enable_global_interrupt;

Unlike past timer examples, we will need an advanced timer here and so Timer 0 is used. This timer is

clocked with the 12MHz system clock that has been divided by a prescalar of 12. Thus, the timer is

operating at 1MHz speed, i.e., 1 timer tick = 1µs. We don’t want any output from the timer and so this

feature is disabled. The only different thing here that sets this setup apart from the other timer

examples is the “gate” feature. Gate tells Timer 0 when and when not to run. There are two possible

cases with gating - either the timer runs just like other timers when instructed to run via software or

it runs when it is coded to run and INT0 pin is in logic high state. The latter feature is required in this

example.

TMR0_setup(TMR0_16_bit_non_auto_reload, \
 TMR0_sysclk, \
 TMR0_clk_prescalar_12T, \
 TMR0_ext_gate, \
 TMR0_no_clk_out);

Note timer interrupt is not needed.

Page | 92

As soon as there is an external interrupt, the timer immediately stops because of the falling edge that

triggered the interrupt and the subsequent low level at INT0 pin. Timer’s count is captured and stored

in an array.

void EXT_0_ISR(void)
interrupt 0
{
 frames[bits] = TMR0_get_counter();
 bits++;
 TMR0_start;

 if(bits >= 33)
1` {
 received = 1;
 _disable_global_interrupt;
 TMR0_stop;
 }

 TMR0_load_counter_16(0x0000);
}

The captured counts are compared against maximum and minimum interval limits because as stated,

pulse widths may slightly vary from their ideal figures. From captured counts, we can sort pulses and

decode pulses. This decoded information can be used to deduce command and address.

#define sync_high 5850 //approx 1.3 * 4500us
#define sync_low 3150 //approx 0.7 * 4500us
#define one_high 2200 //approx 1.3 * (2250 - 562.5)us
#define one_low 1180 //approx 0.7 * (2250 - 562.5)us
#define zero_high 732 //approx 1.3 * (1125 - 562.5)us
#define zero_low 394 //approx 0.7 * (1125 - 562.5)us

. . . .

unsigned char decode(unsigned char start_pos, unsigned char end_pos)
{
 unsigned char value = 0;

 for(bits = start_pos; bits <= end_pos; bits++)
 {
 value <<= 1;

 if((frames[bits] >= one_low) && (frames[bits] <= one_high))
 {
 value |= 1;
 }
 else if((frames[bits] >= zero_low) && (frames[bits] <= zero_high))
 {
 value |= 0;
 }
 else if((frames[bits] >= sync_low) && (frames[bits] <= sync_high))
 {
 return 0xFF;
 }
 }
 return value;
}

In the main loop, address and command data are displayed on an LCD after receiving and decoding a

NEC frame. After that the microcontroller is readied to receive new NEC frame.

if(received != FALSE)
{
 decode_NEC(&addr, &cmd);

 print_C(3, 1, addr);
 print_C(12, 1, cmd);
 delay_ms(100);
 erase_frames();
 _enable_global_interrupt;
}

Page | 93

Demo

Demo video link: https://youtu.be/9hWbi4iQIjo.

https://youtu.be/9hWbi4iQIjo

Page | 94

Using Single Channel Enhanced PWM to Drive a Servo Motor

Servo motors have varieties of applications both in industrial automation and robotics arena. They are

simple and can be digitally controlled with only one wire and over long distances. However, this one

wire digital control mechanism is somewhat unique and sometimes stressful because trains of low

duty cycle pulses are needed to be sent constantly in order to lock a particular angular position.

To resolve this issue, we can use GPIOs coupled with software delays or timers or PWMs module to

control one or several servo motors. One key advantage of using PWM modules over GPIOs is the

accuracy in timing since PWM modules use timer-counters for timing instead of software delays. In

this section, we will see how we can use a PWM module to drive an ordinary servo motor.

STC8A8K64S4A12’s enhanced PWM module is used as the PWM generator here.

Page | 95

Code

#include "STC8xxx.h"
#include "BSP.h"

#define servo_min_duty 800
#define servo_max_duty 2200
#define step_change 5

void setup(void);
void PWM_idle(void);

void main(void)
{
 unsigned int i = 0x0000;

 setup();

 while(1)
 {
 for(i = servo_min_duty; i < servo_max_duty; i += step_change)
 {
 PWM_set_PWM0_T1(i);
 delay_ms(4);
 }
 for(i = servo_max_duty; i > servo_min_duty; i -= step_change)
 {
 PWM_set_PWM0_T1(i);
 delay_ms(4);
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_12);
 PWM_set_counter(20000);

 PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P20, \
 PWM_level_normal);

 PWM_set_PWM0_T1(1000);
 PWM_set_PWM0_T2(0);

 PWM_start_counter;
}

Page | 96

Schematic

Explanation

Servo motors typically have timing diagrams as shown below:

Each pulse has a period of 20ms but the duty cycle/pulse high time is varied from 5 - 10% to rotate

from one direction to the other. This clearly demonstrates why timing is very important for servo

motors.

Page | 97

The demo program here is coded to run at 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

PWM0 hardware is configured to use P2.0 pin as servo control pin. The PWM hardware clock is set to

1MHz by using system clock as clock source and dividing it with a prescalar of 12. This is, however, not

the PWM output frequency because the PWM counter is loaded with count value of 20000. The

resultant PWM output frequency is 50Hz as shown in the following equation:

𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑃𝑊𝑀 𝐼𝑛𝑝𝑢𝑡 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 × 𝑃𝑊𝑀 𝐶𝑙𝑜𝑐𝑘 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟)
=

12 𝑀𝐻𝑧

(20000 × 12)
= 50 𝐻𝑧

and

𝑃𝑊𝑀 𝑃𝑒𝑟𝑖𝑜𝑑 =
1

𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1

50𝐻𝑧
= 20𝑚𝑠 = 20000𝜇𝑠

and

𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
|𝑃𝑊𝑀 𝑇2 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑊𝑀 𝑇1 𝑉𝑎𝑙𝑢𝑒|

𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
× 100% =

|0 − 1000|

20000
 × 100% = 5%

The following codes does all mentioned so far. However, PWM setup is not just about timing only.

PWM hardware also need an output. We have to mention which PWM we would be using and what

would be its level and polarity.

PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_12);

PWM_set_counter(20000);

PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P20, \
 PWM_level_normal);

PWM_set_PWM0_T1(1000);
PWM_set_PWM0_T2(0);

PWM_start_counter;

After setting all these, we just have to start the PWM hardware by starting the PWM counter.

Inside the main loop, the duty cycle of the PWM is slightly varied in steps. This results in smooth servo

motion. Note that the maximum and minimum duty cycles are not 2000 and 1000 respectively as they

ideally should have been. This is so because these values are typical ones and not always practical.

Thus, the maximum and minimum duty cycles are set to 2200 and 800 respectively.

𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
|𝑃𝑊𝑀 𝑇2 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑊𝑀 𝑇1 𝑉𝑎𝑙𝑢𝑒|

𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
× 100% =

|0 − 2200|

20000
 × 100% = 11%

𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
|𝑃𝑊𝑀 𝑇2 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑊𝑀 𝑇1 𝑉𝑎𝑙𝑢𝑒|

𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
× 100% =

|0 − 800|

20000
 × 100% = 4%

Page | 98

The 1% variation is needed because of non-ideality.

#define servo_min_duty 800
#define servo_max_duty 2200
#define step_change 5

....

for(i = servo_min_duty; i < servo_max_duty; i += step_change)
{
 PWM_set_PWM0_T1(i);
 delay_ms(4);
}

for(i = servo_max_duty; i > servo_min_duty; i -= step_change)
{
 PWM_set_PWM0_T1(i);
 delay_ms(4);
}

The logic analyser data shown below verifies that whatever stated so far has been achieved.

Page | 99

Demo

Demo video link: https://youtu.be/TdHbkxH7ZWs.

https://youtu.be/TdHbkxH7ZWs

Page | 100

Using Multi Channel Enhanced PWM to Drive an RGB LED

Since we now have seen how to use single channel enhanced PWM, we must also see how to use

multichannel PWM. Multi-channel PWM has many applications. For example, multi-channel PWM is

used in SMPSs, inverters, motor controllers, LED drivers, etc.

Code

#include "STC8xxx.h"
#include "BSP.h"

#define steps 33

void setup(void);
void PWM_idle(void);

void main(void)
{

Page | 101

 signed char i = 0x00;
 signed char j = 0x00;

 const unsigned int duty1_value[steps] = {0, 950, 1892, 2817, 3717, 4582, 5407, 6182, 6901, 7558, 8146,
 8660, 9096, 9450, 9718, 9898, 9988, 9995, 9897, 9717, 9449, 9095,
 8658, 8144, 7555, 6898, 6179, 5403, 4579, 3713, 2813, 1888 ,946};

 const unsigned int duty2_value[steps] = {8658, 8144, 7555, 6898, 6179, 5403, 4579, 3713, 2813, 1888 ,946,
 0, 950, 1892, 2817, 3717, 4582, 5407, 6182, 6901, 7558, 8146,
 8660, 9096, 9450, 9718, 9898, 9988, 9995, 9897, 9717, 9449, 9095};

 const unsigned int duty3_value[steps] = {8660, 9096, 9450, 9718, 9898, 9988, 9995, 9897, 9717, 9449, 9095,
 8658, 8144, 7555, 6898, 6179, 5403, 4579, 3713, 2813, 1888 ,946,
 0, 950, 1892, 2817, 3717, 4582, 5407, 6182, 6901, 7558, 8146};

 setup();

 while(1)
 {
 for(j = 0; j < 6; j++)
 {
 for(i = 0; i < steps; i++)
 {
 PWM_set_PWM0_T2(duty1_value[i]);
 PWM_set_PWM1_T2(duty2_value[i]);
 PWM_set_PWM2_T2(duty3_value[i]);
 delay_ms(60);
 }
 }

 PWM_idle();

 for(j = 0; j < 6; j++)
 {
 for(i = 0; i < steps; i++)
 {
 PWM_set_PWM0_T2(duty1_value[i]);
 PWM_set_PWM1_T2(duty1_value[i]);
 PWM_set_PWM2_T2(duty1_value[i]);
 delay_ms(60);
 }
 }

 PWM_idle();
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_2);

 PWM_set_counter(10000);

 PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P10, \
 PWM_level_normal);

 PWM1_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_1_pin_P11, \
 PWM_level_normal);

 PWM2_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_2_pin_P12, \
 PWM_level_normal);

 PWM_set_PWM0_T1(0);
 PWM_set_PWM0_T2(0);

 PWM_set_PWM1_T1(0);
 PWM_set_PWM1_T2(0);

 PWM_set_PWM2_T1(0);
 PWM_set_PWM2_T2(0);

Page | 102

 PWM_start_counter;
}

void PWM_idle(void)
{
 PWM0_hold_level(PWM_HLD_L_low);
 PWM1_hold_level(PWM_HLD_L_low);
 PWM2_hold_level(PWM_HLD_L_low);
 delay_ms(100);
 PWM0_hold_level(PWM_level_normal);
 PWM1_hold_level(PWM_level_normal);
 PWM2_hold_level(PWM_level_normal);
 delay_ms(100);
}

Schematic

Explanation

In this demo, a RGB LED is lit with multi-channel PWM. This results in smooth color shifting of the LED.
The concepts are same as that of single channel PWM example.

The system clock is set to 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

The PWM frequency is set to 600 Hz.

𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑃𝑊𝑀 𝐼𝑛𝑝𝑢𝑡 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 × 𝑃𝑊𝑀 𝐶𝑙𝑜𝑐𝑘 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟)
=

12 𝑀𝐻𝑧

(10000 × 2)
= 600 𝐻𝑧

Since we are using a RGB LED, we need three PWM channels and so their GPIOs are also set. Lastly,

the initial duty cycle is set 0 and the PWM counter is started.

Page | 103

PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_2);

PWM_set_counter(10000);

PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P10, \
 PWM_level_normal);

PWM1_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_1_pin_P11, \
 PWM_level_normal);

PWM2_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_2_pin_P12, \
 PWM_level_normal);

PWM_set_PWM0_T1(0);
PWM_set_PWM0_T2(0);
PWM_set_PWM1_T1(0);
PWM_set_PWM1_T2(0);
PWM_set_PWM2_T1(0);
PWM_set_PWM2_T2(0);

PWM_start_counter;

To achieve smooth fading the duty cycle of each LED is mapped using a sine table and the duty cycles

are varied according to the formula as have already seen.

𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
|𝑃𝑊𝑀 𝑇2 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑊𝑀 𝑇1 𝑉𝑎𝑙𝑢𝑒|

𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
× 100%

However, there are phase shifts in all of these tables, meaning that the three PWM channels do not

have the same duty cycle at the same time.

const unsigned int duty1_value[steps] = {0, 950, 1892, 2817, 3717, 4582, 5407, 6182, 6901, 7558, 8146,
 8660, 9096, 9450, 9718, 9898, 9988, 9995, 9897, 9717, 9449, 9095,
 8658, 8144, 7555, 6898, 6179, 5403, 4579, 3713, 2813, 1888 ,946};

const unsigned int duty2_value[steps] = {8658, 8144, 7555, 6898, 6179, 5403, 4579, 3713, 2813, 1888 ,946,
 0, 950, 1892, 2817, 3717, 4582, 5407, 6182, 6901, 7558, 8146,
 8660, 9096, 9450, 9718, 9898, 9988, 9995, 9897, 9717, 9449, 9095};

const unsigned int duty3_value[steps] = {8660, 9096, 9450, 9718, 9898, 9988, 9995, 9897, 9717, 9449, 9095,
 8658, 8144, 7555, 6898, 6179, 5403, 4579, 3713, 2813, 1888 ,946,
 0, 950, 1892, 2817, 3717, 4582, 5407, 6182, 6901, 7558, 8146};

Page | 104

In the main, the PWM channels are driven as per their respective sine tables.

for(j = 0; j < 6; j++)
{
for(i = 0; i < steps; i++)

 {
 PWM_set_PWM0_T2(duty1_value[i]);
 PWM_set_PWM1_T2(duty2_value[i]);
 PWM_set_PWM2_T2(duty3_value[i]);
 delay_ms(60);
 }
}

PWM_idle();

for(j = 0; j < 6; j++)
{
 for(i = 0; i < steps; i++)
 {
 PWM_set_PWM0_T2(duty1_value[i]);
 PWM_set_PWM1_T2(duty1_value[i]);
 PWM_set_PWM2_T2(duty1_value[i]);
 delay_ms(60);
 }
}

PWM_idle();

Note there is new function in this example unlike the last one. The PWM_idle function ensures that

PWM channels are reset once it is called.

void PWM_idle(void)
{
 PWM0_hold_level(PWM_HLD_L_low);
 PWM1_hold_level(PWM_HLD_L_low);
 PWM2_hold_level(PWM_HLD_L_low);
 delay_ms(100);
 PWM0_hold_level(PWM_level_normal);
 PWM1_hold_level(PWM_level_normal);
 PWM2_hold_level(PWM_level_normal);
 delay_ms(100);
}

Page | 105

Demo

Demo video link: https://youtu.be/4bA-ISSlyrQ.

https://youtu.be/4bA-ISSlyrQ

Page | 106

Controlling a DC Motor with Complementary PWM

Complementary PWM is needed in many power system applications like three phase motor control,

sine wave inverters, BLDC motor control, etc. STC8A8K64S4A12 fortunately adds features to generate

complementary PWMs for the applications aforementioned.

Code

#include "STC8xxx.h"
#include "BSP.h"

#define dead_time_cnt 1
#define pwm_max_cnt 400

#define PB_1 !P12_get_input
#define PB_2 !P13_get_input

void setup(void);
void set_PWM_duty(signed int value);

void main(void)
{
 signed int duty = 0;

 setup();

 while(1)
 {
 if(PB_1)
 {
 duty += 10;

Page | 107

 delay_ms(100);

 if(duty >= pwm_max_cnt)
 {
 duty = pwm_max_cnt;
 }
 }
 if(PB_2)
 {
 duty -= 10;
 delay_ms(100);

 if(duty <= 0)
 {
 duty = 0;
 }
 }
 if(PB_1 || PB_2)
 {
 set_PWM_duty(duty);
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P12_input_mode;
 P13_input_mode;

 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_1);

 PWM_set_counter(pwm_max_cnt);

 PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P10, \
 PWM_level_normal);

 PWM1_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_1_pin_P11, \
 PWM_level_normal);

 PWM_start_counter;
}

void set_PWM_duty(signed int value)
{
 PWM_set_PWM0_T1(value);
 PWM_set_PWM0_T2(0);

 PWM_set_PWM1_T1(pwm_max_cnt - dead_time_cnt);
 PWM_set_PWM1_T2(value + dead_time_cnt);
}

Page | 108

Schematic

Explanation

Since complementary PWM is a requirement for proper motor drive, the demo here is a rudimentary

DC motor drive example with STC’s complementary PWM and a L293 motor driver. The motor’s speed

is governed by PWM duty cycle alternation. Pressing buttons assigned with pins P1.2 and P1.3 changes

motor speed.

The system clock is set to 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

The same clock is used by the enhanced PWM module. Most of the stuffs in the setup are like the

previous PWM examples.

#define dead_time_cnt 1
#define pwm_max_cnt 400

....

PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_1);

PWM_set_counter(pwm_max_cnt);

PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P10, \
 PWM_level_normal);

PWM1_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_1_pin_P11, \
 PWM_level_normal);

PWM_start_counter;

Page | 109

The math behind PWM generation is same as the ones we have already seen:

𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑃𝑊𝑀 𝐼𝑛𝑝𝑢𝑡 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 × 𝑃𝑊𝑀 𝐶𝑙𝑜𝑐𝑘 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟)
=

12 𝑀𝐻𝑧

(400 × 1)
= 30 𝑘𝐻𝑧

and

𝑃𝑊𝑀 𝑃𝑒𝑟𝑖𝑜𝑑 =
1

𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1

30 𝑘𝐻𝑧
= 33.33 𝜇𝑠

The logic analyser data proves that the above figures are correct:

Now imagine a SR flip-flop with outputs T1 and T2. So far, we have seen that varying T1 and T2 alter

PWM duty cycle. Thus, S and R can be imagined as logic transition counts. When the PWM counter

reaches up to these values, high-to-low or low-to-high transition occurs in the PWM waveform.

Page | 110

To generate complementary PWM, we would need two PWM channels and so in this example PWM

channels 0 and 1 are selected. The word “complementary” suggests that two things are opposite of

the other and so in such PWM technique, there are two PWMs that have opposite logic polarities. This

is the simplistic presentation of complementary PWM.

In ideal terms, if one PWM channel is running with 40% duty cycle, the other should be running at 60%

(-40%) duty cycle. However, doing so practically would lead to some issues because when one PWM

is going from high-to-low transition, the other is doing just the opposite and during these transition

times at some point both PWMs are at same logic level. If these PWMs are fed to external devices like

transistors or MOSFETs as shown below then quite possibly during the transition times both MOSFETs

would be momentarily turn on, leading to temporary short-circuit and unnecessary overheating. The

temporal short circuit may even cause the external devices to get damaged or cause momentary

power shortages. To avoid this phenomenon, we have to apply dead-time technique to ensure that

the transitions occur separately with some minute delay.

Page | 111

Now let’s see how the PWM duty cycle is ensured while maintaining the needs so far discussed. The

following code snippet is responsible for maintaining PWM duty cycles in complementary format. It

may look confusing unlike the previous examples.

#define dead_time_cnt 1
#define pwm_max_cnt 400

....

void set_PWM_duty(signed int value)
{
 PWM_set_PWM0_T1(value);
 PWM_set_PWM0_T2(0);

 PWM_set_PWM1_T1(pwm_max_cnt - dead_time_cnt);
 PWM_set_PWM1_T2(value + dead_time_cnt);
}

The confusion will vanish after carefully looking at the math below. Imagine that we want to set the

duty cycle to 75%.

𝑃𝑊𝑀0 𝐷𝑢𝑡𝑦 =
|𝑃𝑊𝑀0 𝑇2 − 𝑃𝑊𝑀0 𝑇1|

𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
× 100% =

|300 − 0|

400
 × 100% = 75%

and

𝑃𝑊𝑀1 𝐷𝑢𝑡𝑦 =
|𝑃𝑊𝑀1 𝑇2 − 𝑃𝑊𝑀1 𝑇1|

𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
× 100% =

|(400 − 1) − (300 + 1)|

400
 × 100% = 24.5%

As the math shows due to the application of dead-time, PWM1’s duty cycle is slightly less than the

ideal 25% mark. In this example, 1 count of dead time is equivalent to 0.25% duty cycle and since there

are two such counts the total duty cycle is reduced by 0.5%.

Demo

Demo video link: https://youtu.be/vdJJhtsgocE.

https://youtu.be/vdJJhtsgocE

Page | 112

Using PCA to Measure Frequency

Frequency measurement is often a challenging task as it requires good understanding of timers and

input capture modules. Frequency measurement becomes very important while designing power

electronics devices like generator controllers, inverters, power line measurement meters, etc. In

STC8A8K64S4A12, there is no dedicated input capture hardware module but there is a PCA module

that can be used to replenish this absence of a dedicated input capture peripheral.

Code

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"

unsigned int first_edge = 0x0000;
unsigned int second_edge = 0x0000;

unsigned long clks = 0x00000000;
unsigned long ov_cnt = 0x00000000;

void setup(void);

void PCA_ISR(void)
interrupt 7
{
 if(check_PCA_Counter_overflow_flag)
 {
 ov_cnt++;;
 clear_PCA_Counter_overflow_flag;
 }

 if(check_PCA_0_flag)
 {
 second_edge = PCA_get_CCAP0();
 clks = ((65536 * ov_cnt) + second_edge - first_edge);
 ov_cnt = 0;

Page | 113

 first_edge = second_edge;
 second_edge = 0;
 clear_PCA_0_flag;
 }
}

void main(void)
{
 float f = 0.0;

 unsigned char s = 0;

 setup();

 LCD_goto(0, 0);
 LCD_putstr("Period/ms:");

 LCD_goto(0, 1);
 LCD_putstr("Freq./kHz:");

 while(1)
 {
 PWM_stop_counter;

 switch(s)
 {
 case 1:
 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_1);
 break;
 }

 case 2:
 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_4);
 break;
 }

 case 3:
 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_3);
 break;
 }

 default:
 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_2);
 break;
 }

}

 PWM_start_counter;
 delay_ms(1000);

 f = (12000.0 / ((float)clks));
 print_I(11, 0, clks);
 print_F(11, 1, f, 1);

 delay_ms(1000);

 s++;
 if(s > 3)
 {
 s = 0;
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P10, \
 PWM_level_normal);

Page | 114

 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_2);
 PWM_set_counter(500);

 PWM_set_PWM0_T1(0);
 PWM_set_PWM0_T2(200);

 PWM_start_counter;

 PCA_pin_option(0x00);

 PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);
 PCA_load_counter(0x0000);

 PCA_0_mode(PCA_16_bit_falling_edge_capture);

 _enable_PCA_0_interrupt;
 _enable_PCA_counter_interrupt;
 _enable_global_interrupt;

 PCA_start_counter;

 LCD_init();
 LCD_clear_home();
}

Schematic

Explanation

Measurement of frequency can easily be done by timing the time difference between two successive

rising or falling edge captures. Input capture hardware along with a timer would scan and sample

incoming waveform. Thus, input capture hardware must have at least twice the sampling frequency

than the frequency of the waveform coming to the capture input. This is simply the Nyquist criterion.

𝐹𝑆 ≥ (2 × 𝐹)

To demonstrate frequency measurement with PCA, I have used two hardware. Firstly, I used a PWM

generator to generate waveform of different frequencies and secondly, a PCA module to capture the

PWM waveform.

Page | 115

To begin with, note that the micro is running at 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

The PWM peripheral is setup with P1.0 pin as PWM channel 0. The initial frequency of the PWM is

12kHz and the duty cycle is about 60%.

PWM0_setup(PWM_pin_is_PWM_output, \
 PWM_init_lvl_low, \
 PWM_0_pin_P10, \
 PWM_level_normal);

PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_2);
PWM_set_counter(500);

PWM_set_PWM0_T1(0);
PWM_set_PWM0_T2(300);

PWM_start_counter;

The following equations show us how we fabricated this frequency and duty cycle:

𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑃𝑊𝑀 𝐼𝑛𝑝𝑢𝑡 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 × 𝑃𝑊𝑀 𝐶𝑙𝑜𝑐𝑘 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟)
=

12 𝑀𝐻𝑧

(500 × 2)
= 12 𝑘𝐻𝑧

and

𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
|𝑃𝑊𝑀 𝑇2 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑊𝑀 𝑇1 𝑉𝑎𝑙𝑢𝑒|

𝑃𝑊𝑀 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
× 100% =

|300 − 0|

500
 × 100% = 60%

In the main, the PWM frequency if changed four times and these frequencies are 24kHz, 12kHz, 8kHz and

6kHz. The change is done about every two seconds.

Page | 116

Now let us see how we have to setup the PCA’s capture part. P1.7 pin (PCA0) is setup as the capture

pin that would look for falling edges. PCA hardware clock is running at full system clock speed of

12MHz. The Nyquist criterion is fulfilled because PWM out frequency is not more than 24kHz.

PCA_pin_option(0x00);

PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);
PCA_load_counter(0x0000);

PCA_0_mode(PCA_16_bit_falling_edge_capture);

_enable_PCA_0_interrupt;
_enable_PCA_counter_interrupt;
_enable_global_interrupt;

PCA_start_counter;

PCA interrupt will be triggered when a falling edge is detected or when there is PCA counter overflows.

Both of these events will be needed. Though under a same interrupt subroutine, these events are

differentiated by two separate flags. The first will be needed to make sure that we took account of

any PCA overflow in between two successive captures and the second will be needed to snap PCA

counter count at the moment of falling-edge detection.

void PCA_ISR(void)
interrupt 7
{
 if(check_PCA_Counter_overflow_flag)
 {
 ov_cnt++;;
 clear_PCA_Counter_overflow_flag;
 }

 if(check_PCA_0_flag)
 {
 second_edge = PCA_get_CCAP0();
 clks = ((65536 * ov_cnt) + second_edge - first_edge);
 ov_cnt = 0;
 first_edge = second_edge;
 second_edge = 0;
 clear_PCA_0_flag;
 }
}

When PCA interrupt occurs, two flags are checked. Firstly, the PCA counter overflow is checked and

secondly, PCA0 interrupt flag is checked. If PCA counter overflow occurs then it is saved in a variable.

This will mark that an overflow event occurred during a snap.

Since frequency measurement is done by measuring the PCA counter’s count difference between two

consecutive falling edges, we need to assume that the first capture is basically the second capture

instead of the first falling edge capture. When the second capture is recorded, it is measured against

the first one. In this measurement, we also have to take note if any PCA overflow occurred during the

captures. Note that no timer has been used so far and that is because the PCA module is doubling as

a timer here.

Page | 117

In the main, the PWM frequencies are changed periodically and the PWM frequencies are measured.

The measured frequency is displayed on an LCD.

PWM_stop_counter;

switch(s)
{
 case 1:
 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_1);
 break;
 }

 case 2:
 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_4);
 break;
 }

 case 3:
 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_3);
 break;
 }

default:

 {
 PWM_clk_set(PWM_clk_sys_PS, PWM_clk_ps_sys_clk_div_2);
 break;
 }
}

PWM_start_counter;
delay_ms(1000);

f = (12000.0 / ((float)clks));
print_I(11, 0, clks);
print_F(11, 1, f, 1);

delay_ms(1000);

s++;
if(s > 3)
{
 s = 0;
}

Variable clks represents the count difference between capture snaps and so dividing PCA clock

frequency with this count gives capture waveform frequency in hertz. I have coded 12000 instead of

12000000 as clock frequency because I want measurements to be in kHz instead of Hz.

Page | 118

Demo

Demo video link: https://youtu.be/2uYhZw7FXSE.

https://youtu.be/2uYhZw7FXSE

Page | 119

Using PCA to Measure Pulse Width from HCSR-04 SONAR Module

Apart from frequency measurement, we can apply the same input capture technique to measure pulse

widths or PWM duty cycles. Pulse width measurement requires capturing PCA counts of two

successive opposite edges unlike two successive same edges. In this segment, we will see how we can

measure distance measured by a HCSR-04 SONAR sensor by measuring pulse width output from it.

Code

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"

unsigned char state = 0x00;
unsigned int pulse_width = 0x0000;

void setup(void);

void PCA_ISR(void)
interrupt 7
{
 if(check_PCA_0_flag)
 {
 state ^= 1;
 clear_PCA_0_flag;
 }

Page | 120

 switch(state)
 {
 case 1:
 {
 PCA_load_counter(0x0000);
 break;
 }

 default:
 {
 pulse_width = PCA_get_CCAP0();
 break;
 }
 }
}

void main(void)
{
 float range = 0.0;

 setup();

 LCD_goto(0, 0);
 LCD_putstr("Range/cm:");
 LCD_goto(0, 1);
 LCD_putstr("Pulse/us:");

 while(1)
 {
 P55_low;
 delay_ms(10);

 P16_high;
 delay_us(10);
 P16_low;
 P55_high;

 range = ((((float)pulse_width) / 58.0));
 print_F(10, 0, range, 1);
 print_I(10, 1, pulse_width);

 delay_ms(490);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P16_push_pull_mode;
 P55_open_drain_mode;

 PCA_pin_option(0x00);

 PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_12);
 PCA_load_counter(0x0000);

 PCA_0_mode(PCA_16_bit_both_edge_capture);

 _enable_PCA_0_interrupt;
 _enable_global_interrupt;

 PCA_start_counter;

 LCD_init();
 LCD_clear_home();
}

Page | 121

Schematic

Explanation

HC-SR04 SONAR sensor works by sending a stream of ultrasonic pulses and then timing how long it

took for an echo to bounce back from a nearby object. Based on timing, the sensor gives a pulse of

variable width. The pulse width is a representation of distance or object range.

There are two pins apart from the power supply pins and these are needed to communicate with the

sensor. When the trigger pin of the sensor is pulled high for about 10μs, the sensor acknowledges this

short duration pulse as a command from its host micro to measure and return range data. A pulse

output from the echo pin is the representation of distance.

Page | 122

Now let’s see how the code is working in this example. Firstly, the system clock is set to 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

Pins P1.6 and P1.7 are tied to trigger and echo pins of HC-SR04 sensor respectively.

The PCA hardware is setup by setting its clock to 1MHz. Thus, each of PCA counter’s count is equal to

1μs tick. Default PCA pin configuration is used. The PCA counter is set to 0 count and 16-bit both edge

capture mode is selected. Interrupt method is used and so PCA and global interrupts are enabled

before starting the PCA counter.

PCA_pin_option(0x00);

PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_12);
PCA_load_counter(0x0000);

PCA_0_mode(PCA_16_bit_both_edge_capture);

_enable_PCA_0_interrupt;
_enable_global_interrupt;

PCA_start_counter;

The PCA hardware is now ready to detect edge transitions. When transitions occur, PCA interrupt is

triggered. During a low-to-high transition or rising edge, the PCA counter is reset to 0 count and left

to continue counting. Upon detecting a high-to-low transition or falling edge, the PCA counter is read.

void PCA_ISR(void)
interrupt 7
{
 if(check_PCA_0_flag)
 {
 state ^= 1;
 clear_PCA_0_flag;
 }

 switch(state)
 {
 case 1:
 {
 PCA_load_counter(0x0000);
 break;
 }

 default:
 {
 pulse_width = PCA_get_CCAP0();
 break;
 }
 }
}

𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ = 𝐹𝑎𝑙𝑙𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝐶𝑜𝑢𝑛𝑡 − 𝑅𝑖𝑠𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝐶𝑜𝑢𝑛𝑡

Since the PCA counter is set to 0 during rising edge, the equation simplifies to

𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ = 𝐹𝑎𝑙𝑙𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝐶𝑜𝑢𝑛𝑡 − 0

or simply

𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ = 𝐹𝑎𝑙𝑙𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝐶𝑜𝑢𝑛𝑡

Page | 123

Since the PCA counter is counting with 1µs resolution, the falling edge capture count is the pulse width

period in microseconds.

𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ 𝑖𝑛 µ𝑠 = 𝐹𝑎𝑙𝑙𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝐶𝑜𝑢𝑛𝑡 × 1µ𝑠

In the main loop, the SONAR sensor is triggered and the result from the PCA interrupt is processed.

Target object distance detected by the sensor is a function of pulse width measured in microseconds.

Thus, as per datasheet of the sensor, pulse width divided by 58 is equal to distance in centimeters.

𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑚 =
𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ 𝑖𝑛 µ𝑠

58

The range and the captured pulse width are displayed in an LCD after performing the aforementioned

computations.

P55_low;
delay_ms(10);

P16_high;
delay_us(10);
P16_low;
P55_high;

range = ((((float)pulse_width) / 58.0));
print_F(10, 0, range, 1);
print_I(10, 1, pulse_width);

delay_ms(490);

Demo

Demo video link: https://youtu.be/h8NIdGpSZLI.

https://youtu.be/h8NIdGpSZLI

Page | 124

Using PCA to Generate PWM

Unlike enhanced PWM module, PCA module can used to generate PWMs of different resolutions.

However, PCA-generated PWMs are like general purpose PWMs and do not have additional

functionalities. These PWMs can be used for simple tasks like driving LEDs, servo motors, simple motor

controls, simple DC-DC converters, etc.

The following block diagram shows PCA module in 8-bit PWM mode. The 9-bit internal comparator

compares the values CL and CCAPnL + EPCnL. When CL is equal or greater than CCAPnL + EPCnL, the

PWM output is set high and when CL is less than CCAPnL + EPCnL, the PWM output is set low. Thus,

CCAPnL + EPCnL are responsible for the duty cycle of PWM because CL keeps counting with each tick

of PCA clock. When CL overflows, CCAPnL + EPCnL are reloaded automatically with the contents of

CCAPnH + EPCnH. Updating CCAPnH + EPCnH, results in the alternation of PWM duty cycle. The same

concept is true for PCA PWMs of other resolutions. Similar strategies are applied for PCA PWMs of

other resolutions.

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);
void PWM_idle(void);

void main(void)
{
 signed int j = 0x0000;

 setup();

 while(1)
 {
 for(j = 0; j < 256; j++)
 {
 PCA_0_8_bit_PWM_reload_value(255 - j);

Page | 125

 PCA_1_8_bit_PWM_reload_value(j);
 PCA_2_8_bit_PWM_reload_value(255 - j);
 PCA_3_8_bit_PWM_reload_value(j);
 delay_ms(10);
 }

 for(j = 255; j > -1; j--)
 {
 PCA_0_8_bit_PWM_reload_value(255 - j);
 PCA_1_8_bit_PWM_reload_value(j);
 PCA_2_8_bit_PWM_reload_value(255 - j);
 PCA_3_8_bit_PWM_reload_value(j);
 delay_ms(10);
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 PCA_pin_option(0x10);

 PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);

 PCA_n_PWM(0, PCA_PWM_without_interrupt, PCA_8_bit_PWM);
 PCA_n_PWM(1, PCA_PWM_without_interrupt, PCA_8_bit_PWM);
 PCA_n_PWM(2, PCA_PWM_without_interrupt, PCA_8_bit_PWM);
 PCA_n_PWM(3, PCA_PWM_without_interrupt, PCA_8_bit_PWM);

 PCA_0_8_bit_PWM_compare_value(0);
 PCA_0_8_bit_PWM_reload_value(0);

 PCA_1_8_bit_PWM_compare_value(0);
 PCA_1_8_bit_PWM_reload_value(0);

 PCA_2_8_bit_PWM_compare_value(0);
 PCA_2_8_bit_PWM_reload_value(0);

 PCA_3_8_bit_PWM_compare_value(0);
 PCA_3_8_bit_PWM_reload_value(0);

 PCA_load_counter(0);

 PCA_start_counter;
}

Schematic

Page | 126

Explanation

In this example, four PCA PWM channels are simply used to drive LEDs of different colors.

The system clock is set to 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

Pins P2.3 to P2.6 are used for PWM outputs. Each of these channels are set to 8-bit PWM mode and

their compare and reload values are set to zero. Thus, initially all PWM channels are at same logic

state. The PCA counter is set to run at system clock speed. All PWM channels will be running at same

clock frequency as all are sharing the same PCA counter.

PCA_pin_option(0x10);

/*

ECI CCP0 CCP1 CCP2 CCP3 Hex Option

P1.2 P1.7 P1.6 P1.5 P1.4 0x00 option 1

P2.2 P2.3 P2.4 P2.5 P2.6 0x10 option 2

P7.4 P7.0 P7.1 P7.2 P7.3 0x20 option 3

P3.5 P3.3 P3.2 P3.1 P3.0 0x30 option 4

*/

PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);

PCA_n_PWM(0, PCA_PWM_without_interrupt, PCA_8_bit_PWM);
PCA_n_PWM(1, PCA_PWM_without_interrupt, PCA_8_bit_PWM);
PCA_n_PWM(2, PCA_PWM_without_interrupt, PCA_8_bit_PWM);
PCA_n_PWM(3, PCA_PWM_without_interrupt, PCA_8_bit_PWM);

PCA_0_8_bit_PWM_compare_value(0);
PCA_0_8_bit_PWM_reload_value(0);

PCA_1_8_bit_PWM_compare_value(0);
PCA_1_8_bit_PWM_reload_value(0);

PCA_2_8_bit_PWM_compare_value(0);
PCA_2_8_bit_PWM_reload_value(0);

PCA_3_8_bit_PWM_compare_value(0);
PCA_3_8_bit_PWM_reload_value(0);

PCA_load_counter(0);

PCA_start_counter;

The PWM frequency of PCA channels is calculated to be as follows.

𝑃𝐶𝐴 𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑙𝑜𝑐𝑘

(𝑃𝐶𝐴 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟 × 2𝑃𝑊𝑀 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑃𝐶𝐴 𝑃𝑊𝑀 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
12 𝑀𝐻𝑧

(1 × 28)
= 46.88 𝑘𝐻𝑧

Thus, the period of the PWM is 21.33µs.

Page | 127

The logic analyser data confirms that the frequency is indeed around 46 kHz.

The duty cycles of the PWMs are calculated using the following formula.

𝑃𝐶𝐴 𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑅𝑒𝑙𝑜𝑎𝑑 𝑉𝑎𝑙𝑢𝑒

(2𝑃𝑊𝑀 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 1)

Inside the main loop, each of the channels are updated every 10ms by updating their reload values.

for(j = 0; j < 256; j++)
{
 PCA_0_8_bit_PWM_reload_value(255 - j);
 PCA_1_8_bit_PWM_reload_value(j);
 PCA_2_8_bit_PWM_reload_value(255 - j);
 PCA_3_8_bit_PWM_reload_value(j);
 delay_ms(10);
}

for(j = 255; j > -1; j--)
{
 PCA_0_8_bit_PWM_reload_value(255 - j);
 PCA_1_8_bit_PWM_reload_value(j);
 PCA_2_8_bit_PWM_reload_value(255 - j);
 PCA_3_8_bit_PWM_reload_value(j);
 delay_ms(10);
}

Page | 128

Demo

Demo video link: https://youtu.be/EqEjFmxBRSg.

https://youtu.be/EqEjFmxBRSg

Page | 129

Using PCA as a High-Speed Pulse Generator

In many cases, we need to generate high-frequency carrier waveform or pulse trains. For example,

this is needed when we need to make an infrared (IR) remote transmitter. This job can easily be done

by using a timer or software delays. However, in STC micros, we have PCA hardware to accomplish the

same job much more easily. This lets us use general purpose timers for other tasks.

Code

#include "STC8xxx.h"
#include "BSP.h"

#define freq_change (12000000L / 2 / 38400)

unsigned int value = freq_change;

void setup(void);

void PCA_ISR(void)
interrupt 7
{
 clear_PCA_0_flag;
 PCA0_load_value(value);
 value += freq_change;
}

void main(void)
{

 setup();

 while(1)
 {
 if(P52_get_input == FALSE)
 {
 P24_high;
 P55_low;

Page | 130

 }

 else
 {
 P24_low;
 P55_high;
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P01_push_pull_mode;
 P55_open_drain_mode;

 P52_input_mode;
 P52_pull_up_enable;

 PCA_pin_option(0x10);

 PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);

 PCA_0_mode(PCA_16_bit_high_speed_pulse_output);

 PCA_load_counter(0);
 PCA0_load_value(value);

 _enable_PCA_0_interrupt;
 _enable_global_interrupt;

 PCA_start_counter;
}

Schematic

Explanation

In this example, PCA high-speed pulse mode is used to make an IR remote transmitter.

Since PCA is a time-dependent hardware peripheral, we need to be sure of the system clock settings.
As with most examples, the system clock is set to 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

Page | 131

Four GPIO pins are required for this example and are set right after selecting the system clock. A
button is connected with pin P5.2. Pressing the button would change the logic state of both the
onboard LED (P5.5) and pin P2.4. Lastly, pin P2.3 is set as the PCA CCP0 pin. This pin is the high-speed
pulse output pin. P2.3 and P2.4 are connected to an IR LED.

Note that P2.4 is not set like other GPIOs because it is already set by PCA hardware.

P01_push_pull_mode;
P55_open_drain_mode;

P52_input_mode;
P52_pull_up_enable;

PCA_pin_option(0x10);

Now let’s see how the PCA hardware is set. Firstly, the PCA clock and counting mode are set. PCA clock
is set to run at 12MHz, i.e., at system clock speed. Next, the PCA channel to be used and its mode of
operation is set, here – 16-bit high speed pulse output mode. The PCA counter is set 0 count and PCA0
channel is loaded with a count value.

PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);

PCA_0_mode(PCA_16_bit_high_speed_pulse_output);

PCA_load_counter(0);
PCA0_load_value(value);

_enable_PCA_0_interrupt;
_enable_global_interrupt;

PCA_start_counter;

The loaded value is the count value required to generate the desired frequency of 38.4kHz (26µs
period).

𝑃𝐶𝐴 𝐿𝑜𝑎𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑙𝑜𝑐𝑘

(𝑃𝐶𝐴 𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟 × 2 × 𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

𝑃𝐶𝐴 𝐿𝑜𝑎𝑑 𝑉𝑎𝑙𝑢𝑒 =
12 𝑀𝐻𝑧

(1 × 2 × 38.4 𝑘𝐻𝑧)
= 156 (𝑟𝑜𝑢𝑛𝑑𝑒𝑑)

Finally, the PCA0 and global interrupts are enabled before starting the PCA counter.

Page | 132

Note that PCA counter keeps counting and is not reloaded anywhere in the whole code. It is left on its
own and it will rollover after 65535 counts. When the PCA counter counts to 156 counts, PCA0
interrupt is triggered. Note that 156 counts equal 13µs because the PCA clock is running at 12MHz.
On each interrupt, PCA0's channel polarity is altered. This means 13µs is the pulse width of high-speed
pulse output waveform.

𝑃𝑢𝑙𝑠𝑒 𝑊𝑖𝑑𝑡ℎ =
156

12𝑀𝐻𝑧
= 13µ𝑠

PCA interrupt is processed by clearing PCA0 interrupt flag and by loading PCA0 with a new count value
(previous count + load value, i.e., 156 + 156 = 312) because after that new count (312) PCA0 interrupt
will be triggered again and the process repeats over and over again.

void PCA_ISR(void)
interrupt 7
{
 clear_PCA_0_flag;
 PCA0_load_value(value);
 value += freq_change;
}

Inside the main loop, the push button pin is polled. If the button is pressed, the IR LED is enabled by
setting P2.4 high or else it is disabled. Since P2.3 is the PCA 0 output, there is always 38.4 kHz square
pulses present in that pin. Only when P2.4 is set is high, the IR LED lights up. It is just like a simple AND
logic.

if(P52_get_input == FALSE)
{
 P24_high;
 P55_low;
}

else
{
 P24_low;
 P55_high;
}

Page | 133

Demo

Demo video link: https://youtu.be/V9xbGAijxjQ.

https://youtu.be/V9xbGAijxjQ

Page | 134

Using PCA as a Software Timer

We have already seen how the PCA module doubles as timer in the capture examples. However, unlike

actual hardware timers, we would have to use some software tricks and keep certain things in mind.

Code

#include "STC8xxx.h"
#include "BSP.h"

#define T_Load (1000000L / 12 / 2)

unsigned int value = T_Load;

void setup(void);

void PCA_ISR(void)
interrupt 7
{
 clear_PCA_0_flag;
 PCA0_load_value(value);
 P55_toggle;
 value += T_Load;
}

void main(void)
{

 setup();

 while(1)
 {
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 24, MCLK_SYSCLK_no_output, MCLK_out_P54);

Page | 135

 P55_open_drain_mode;

 PCA_pin_option(0x10);

 PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_12);

 PCA_0_mode(PCA_16_bit_software_timer);

 PCA_load_counter(0);
 PCA0_load_value(T_Load);

 _enable_PCA_0_interrupt;
 _enable_global_interrupt;

 PCA_start_counter;
}

Schematic

Explanation

This example uses the same concepts as in the high-speed pulse output example and yes, again it is a
simple onboard LED blinking example. Between the two examples almost everything is same.

The system clock is set to 1MHz.

CLK_set_sys_clk(IRC_24M, 24, MCLK_SYSCLK_no_output, MCLK_out_P54);

PCA is setup with just as in the past example except for the clock prescalar and mode of operation. In
this example, the PCA clock is set to 83.3kHz and software timer mode is selected. Note that since no
PCA input-output channel is needed in this example, it doesn’t matter which pin arrangement is
initialized.

PCA_pin_option(0x10);

PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_12);

PCA_0_mode(PCA_16_bit_software_timer);

PCA_load_counter(0);

Page | 136

PCA0_load_value(T_Load);

_enable_PCA_0_interrupt;
_enable_global_interrupt;

PCA_start_counter;

The desired LED blinking frequency is 1Hz and so the PCA0 is loaded with the following count value.

𝑃𝐶𝐴 𝐿𝑜𝑎𝑑 𝑉𝑎𝑙𝑢𝑒 =
1 𝑀𝐻𝑧

(12 × 2 × 1 𝐻𝑧)
= 41666 (𝑟𝑜𝑢𝑛𝑑𝑒𝑑)

The PCA clock frequency is as follows:

𝑃𝐶𝐴 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1 𝑀𝐻𝑧

12
= 83.33 𝑘𝐻𝑧 𝑜𝑟 𝑎𝑝𝑝𝑟𝑜𝑥. 12 µ𝑠 𝑝𝑒𝑟𝑖𝑜𝑑

Thus, PCA interrupt will be triggered at every half second as per following formula:

𝑃𝐶𝐴 𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 41666 × 12 µ𝑠 = 499.99 𝑚𝑠

Since we are toggling the onboard LED, every half second, it will change its state and so the toggling

frequency is 1 Hz.

Note there is no operation in the main loop.

Page | 137

Demo

Demo video link: https://youtu.be/QuXtghib1KQ.

https://youtu.be/QuXtghib1KQ

Page | 138

Using PCA to Extend External Interrupt Capability

An alternative way of using the hardware PCA module is to use it to extend external interrupt

capability of our STC micro.

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);

void PCA_ISR(void)
interrupt 7
{
 if(check_PCA_0_flag)
 {
 clear_PCA_0_flag;
 P54_low;
 }
 if(check_PCA_1_flag)
 {
 clear_PCA_1_flag;
 P54_high;
 }
}

void main(void)
{

 setup();

 while(1)
 {
 P55_toggle;
 delay_ms(400);
 };
}

Page | 139

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P54_push_pull_mode;
 P55_open_drain_mode;

 PCA_pin_option(0x00);

 PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);

 PCA_0_mode(PCA_16_bit_falling_edge_capture);
 PCA_1_mode(PCA_16_bit_falling_edge_capture);

 PCA_load_counter(0);

 _enable_PCA_0_interrupt;
 _enable_PCA_1_interrupt;
 _enable_global_interrupt;

 PCA_start_counter;
}

Schematic

Explanation

Perhaps this is the one and only PCA module example that doesn’t require precise selection of timing

parameters and so we will directly go to PCA settings. In this example, a LED connected to pin P5.4 is

either turned on or off using two buttons. These buttons are attached to default PCA channel 0 and 1

pins.

PCA_pin_option(0x00);

PCA_setup(PCA_continue_counting_in_idle_mode, PCA_clk_sys_clk_div_1);

PCA_0_mode(PCA_16_bit_falling_edge_capture);
PCA_1_mode(PCA_16_bit_falling_edge_capture);

PCA_load_counter(0);

_enable_PCA_0_interrupt;
_enable_PCA_1_interrupt;
_enable_global_interrupt;

PCA_start_counter;

Page | 140

Both PCA channel input pins are set to capture falling edges. It is not mandatory to use falling edge

capture. In this case however, I used so because the buttons have external pullup resistors and so

pressing them would lead to a high-to-low pin transition or falling edge.

The whole PCA setup seem to look like PCA capture mode setup but the exception is the fact that we

won’t be needing the capture counts this time.

The state of the P5.4 LED is altered inside PCA interrupt subroutine and everything will appear as if

the things are being done with external interrupts. Note that though this external interrupt technique

works just like ordinary external interrupts, there is no way of setting interrupt priorities amongst PCA

channels themselves.

void PCA_ISR(void)
interrupt 7
{
 if(check_PCA_0_flag)
 {
 clear_PCA_0_flag;
 P54_low;
 }
 if(check_PCA_1_flag)
 {
 clear_PCA_1_flag;
 P54_high;
 }
}

The only task that is done in the main loop is a simple onboard LED blinking. This is not a must but this

is only needed to show that PCA operations are done without blocking anything of the main loop.

P55_toggle;
delay_ms(400);

Demo

Demo video link: https://youtu.be/w9Ys7HBVvPQ.

https://youtu.be/w9Ys7HBVvPQ

Page | 141

Watchdog Timer (WDT)

As with any other microcontroller, reset has many sources and watchdog timer is one of them.

STC8A8K64S4A12’s watchdog timer is a typical independent watchdog timer that will reset the MCU

core in the event of an unforeseen software failure. The watchdog timer of STC8A8K64S4A12 has no

alternative use. In some other microcontroller families like TI MSP430s, watchdog timer can be used

like an ordinary timer.

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);

void main(void)
{
 unsigned char i = 0;

 setup();

 while(1)
 {
 P11_toggle;

 if(P52_get_input == FALSE)
 {
 for(i = 0; i <= 9; i++)
 {
 P10_toggle;
 delay_ms(100);
 }

 while(1);
 }

 delay_ms(200);
 WDT_reset;
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P52_input_mode;
 P52_pull_up_enable;

 P10_push_pull_mode;
 P11_push_pull_mode;

 WDT_setup(WDT_continue_counting_in_idle_mode, WDT_div_factor_32);
}

Page | 142

Schematic

Explanation

For demoing WDT functionality, a simple LED blinking code is used. Two LEDs are used – one with pin

P1.0 and the other with P1.1. P5.2 pin is used for a push button and the system clock is set at 12MHz.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

P52_input_mode;
P52_pull_up_enable;

P10_push_pull_mode;
P11_push_pull_mode;

STC8A8K64S4A12’s WDT is dependent on system clock and this is an old concept. I say it is primitive

concept because many microcontrollers nowadays use a totally independent clock for WDT. Having

an independent clock for WDT reduces the chance of WDT getting affected by issues with main or

system clock.

WDT is setup according to the following formula:

From the formula, we can clearly see that WDT overflow timing is dependent on WDT prescalar and

system clock. The following table shows some typical values.

Page | 143

In this code, a prescalar value of 32 is set with 12MHz system clock. Thus, the WDT will reset after

about one second if not refreshed or reset.

WDT_setup(WDT_continue_counting_in_idle_mode, WDT_div_factor_32);

In the main loop, a LED connected to pin P1.1 is toggled every 200ms while P1.0 LED is kept turned

on. The WDT is kept resetting continuously under this condition and it does not overflow.

P11_toggle;

if(P52_get_input == FALSE)
{
 for(i = 0; i <= 9; i++)
 {
 P10_toggle;
 delay_ms(100);
 }

 while(1);
}

delay_ms(200);
WDT_reset;

If, however, P5.2 push button is pressed, the code enters a new loop which simulates an undesired

condition. In this condition the state of P1.1 LED seems to get stuck. P1.0 LED flashes briefly, suggesting

the code entered undesired loop and WDT is not being reset. Thus, after one second the CPU resets

and P1.1 LED again starts to toggle. This suggests that the WDT has triggered a reset due to its

overflow.

Page | 144

Lastly before signing off from this topic, please note the following setting in programmer GUI. These

can also be set in the GUI too apart from coding.

Demo

Demo video link: https://youtu.be/0EyRSlsJx-g.

https://youtu.be/0EyRSlsJx-g

Page | 145

Wakeup Timer and Low Power Mode

Wakeup timer is an interesting feature that is not seen in most microcontrollers. It allows us to

automatically wakeup a microcontroller from sleep or low power mode after a fixed interval. It is

especially useful in cases where we need to take periodic short measurements and then keep our

device in low power state to conserve power. A good example is a refrigerator temperature controller.

The temperature controller would periodically check interior temperature and decide when to

operate the compressor for cooling. Since the compressor would work for short times, the control

system of the refrigerator need not to be kept active all the times. Periodic short measurements are

all that are needed. This, in turn, would help in energy saving. This tactic becomes even more vital if

refrigerator of the discussion is battery-operated.

Code

#include "STC8xxx.h"
#include "BSP.h"

void setup(void);

void main(void)
{
 unsigned char i = 0;
 setup();

 while(1)
 {
 WKT_disable;

 for(i = 0; i <= 15; i++)
 {
 P55_toggle;
 delay_ms(100);
 }

 WKT_enable;
 Go_to_Power_Down_State;
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P55_open_drain_mode;

 WKT_set_interval(9000);
}

Page | 146

Schematic

Explanation

In this example, two features of STC8A8k64S4A12 have been shown. Firstly, low power mode is

demoed and secondly, the wakeup timer.

First, let’s see how the wakeup timer is set. Wakeup timer is clocked with internal 32kHz oscillator.

This keeps it independent from the system clock. However, the internal 32KHz oscillator is not very

accurate and so there could be some deviations. To set the wakeup timer, all we need to do is to load

its internal 15-bit counter with some value so that we get our desired wakeup time. The wakeup time

is calculated according to the following formula:

1000

32
 × 16 × (1 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑒) ≈ 𝑊𝑎𝑘𝑒𝑢𝑝 𝑇𝑖𝑚𝑒 𝑖𝑛 µ𝑠

or simply:

0.5 × (1 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑒) ≈ 𝑊𝑎𝑘𝑒𝑢𝑝 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑠

In the code, the counter value is set to 9000. This would roughly give a wake-up time of 4.5s once the

core goes to low-power state.

WKT_set_interval(9000);

Note that although the counter is loaded the wake-up time is not started. This is so because we want

to wake the micro after it enters low-power mode.

Page | 147

In the main loop, the wake-up timer is disabled. The onboard LED is flashed a few times to indicate

that the code in the main loop is running. After flashing the LED, the wake-up timer is started and low-

power mode is entered.

WKT_disable;

for(i = 0; i <= 15; i++)
{
 P55_toggle;
 delay_ms(100);
}

WKT_enable;
Go_to_Power_Down_State;

Entering low power mode is easy. Just add the following command:

Go_to_Power_Down_State;

After entering low-power mode, the LED seems to freeze and there seems no activity at all for some

time. After about 4.5s, the LED repeats flashing just like before. This time the LED flashing not only

indicates main loop code execution but it also indicates that the wake timer ran and woke up the CPU

core from low-power sleep mode.

Demo

Demo video link: https://youtu.be/slPWU7c_idM.

https://youtu.be/slPWU7c_idM

Page | 148

Communication Hardware Overview

STC8A8K64S4A12 packs all kinds of common communication hardware peripheral that most modern

microcontrollers can offer. The following are available in STC8A8K64S4A12’s arsenal:

Comm. Description I/O
Max.
Speed

Max.
Distance

Max. Possible
Number of Devices

in a Bus

UART
Asynchronous serial point-to-
point communication

2 115.2kbps 15m 2 (Point-to-Point)

SPI
Short-range synchronous master-
slave serial communication

3/4 4Mbps 0.1m Virtually unlimited

I2C
Short-range synchronous master-
slave serial communication using
one data and one clock line

2 1Mbps 0.5m 127

RS-485
Asynchronous differential two
wire serial communication

3 115.2kbps 1.2km Several

As always, we also have options for software-based communications. Using some coding, we can

implement software-based SPI, I2C and other forms of communications. One wire communication is

a good example. One wire communication is fully implemented in software. Using a combination of

hardware and software, we can also implement methods to decode IR communication.

Though software methods will rarely be needed, these methods allow us to understand the working

principle of different communication methods and in this way build confidence for coding devices that

do not follow standard I2C, SPI or UART methods. The downside of software communications is their

relative processing speed when compared with their hardware counterparts because software-based

communications are made virtually in codes rather than in physical hardware.

I won’t be discussing much about the software techniques because in all of my past tutorials, I have

been discussing about them briefly and most of these stuffs are mere confirmation of implementation

and repetition.

Page | 149

UART offers long-distance serial communication and can also be employed for simple SPI-like serial
and industry-standard RS-485 communications. STC8A8K64S4A12 has four UART hardware with
independent interrupts. UART1 is the most advanced UART of all. All UART hardware peripheral need
a timer for baud rate generation. Timer 2 is common to all of these UARTs and so it is wise to leave it
for UARTs. All of these UART have multiple alternative pins associated with them. These pin mapping
is summarized below:

Comm. Block
No of GPIOs

Used
Associated Timer

Default GPIO
Pin Pair

Pair
Alternative

GPIO Pin Pair

UART

UART 1 2

Timer 1 TXD = P3.1
Pair 2

TXD = P3.7

RXD = P3.6

Pair 3
TXD = P1.7

Timer 2 RXD = P3.0

RXD = P1.6

Pair 4
TXD = P4.4

RXD = P4.3

UART2 2 Timer 2
TXD = P1.1

Pair 2
TXD = 4.2

RXD = 1.0 RXD = 4.0

UART3 2
Timer 2 TXD = P0.1

Pair 2
TXD = 5.1

Timer 3 RXD = P0.0 RXD = 5.0

UART4 2
Timer 2 TXD = P0.3

Pair 2
TXD = 5.3

Timer 4 RXD = P0.2 RXD = 5.2

Page | 150

I2C hardware available in STC8A8K64S4A12 is very simple but it offers lot of flexibilities. The I2C block

can be used in both I2C master or slave roles. Just like UART it has lot of alternative pin pair options

as the table below shows.

Comm. Block
No of GPIOs

Used
Default GPIO Pin

Pair
Pair

Alternative GPIO Pin
Pair

I2C
Only one I2C
block present

2

SDA = P1.4
Pair 2

SDA = P2.4

SCL = P2.5

Pair 3
SDA = P7.6

SCL = P1.5

SCL = P7.7

Pair 4
SDA = P3.3

SCL = P3.2

Page | 151

SPI hardware is also fully implemented in STC8A8K64S4A12. Using the SPI hardware is very simple and

like other communication peripherals, we have options to use various alternative GPIO pin groups.

Both SPI and I2C blocks are fully independent blocks unlike UARTs as UART blocks are dependent on

internal hardware timers.

Comm. Block
No of GPIOs

Used
GPIO Pin Groups SS MOSI MISO SCLK

SPI
Only one
SPI block
present

3 or 4
Depending on
MOSI – MISO

usage

Default P1.2 P1.3 P1.4 P1.5

Alternate Pair 1 P2.2 P2.3 P2.4 P2.5

Alternate Pair 2 P7.4 P7.5 P7.6 P7.7

Alternate Pair 3 P3.5 P3.4 P3.3 P3.2

Page | 152

I2C

Inter Integrated Circuit (I2C) was pioneered by Philips (now NXP) about three decades ago. I2C, just

like SPI, is meant for short-distance synchronous onboard communications. I2C is very simple to use

as only two wires are needed for communication and this is why often I2C is alternatively called two-

wire communication (TWI). In an I2C communication bus, there can be one master or host device and

one or several slave devices. The maximum number of devices that can coexist in an I2C bus at a time

is 127. Usually, the communication master or host is a microcontroller that is responsible for initiating

communications while slave devices can be anything from another microcontroller to sensors,

memory devices, digital peripherals, etc. Only master and slave data transactions are possible because

only a master can request data from or write to a slave device. Slave-slave communication is not

possible. In an I2C bus, only one master-slave pair can communicate at a time. The rest of the devices

stay idle during this time.

To know more about I2C communication, visit these pages:

• https://learn.mikroe.com/i2c-everything-need-know

• https://learn.sparkfun.com/tutorials/i2c

• http://www.ti.com/lsds/ti/interface/i2c-overview.page

• http://www.robot-electronics.co.uk/i2c-tutorial

• https://www.i2c-bus.org/i2c-bus

• http://i2c.info

https://learn.mikroe.com/i2c-everything-need-know
https://learn.sparkfun.com/tutorials/i2c
http://www.ti.com/lsds/ti/interface/i2c-overview.page
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.i2c-bus.org/i2c-bus
http://i2c.info/

Page | 153

Code

I2C.h

/*
SCL SDA Hex Option
P1.5 P1.4 0x00 option 1
P2.5 P2.4 0x10 option 2
P7.7 P7.6 0x20 option 3
P3.2 P3.3 0x30 option 4
*/

#define I2C_pin_option(value) do{P_SW2 |= value;}while(0)

//Timeout
#define I2C_timeout 1000

//state
#define I2C_disable 0x00
#define I2C_enable 0x80

//mode
#define I2C_slave_mode 0x00
#define I2C_master_mode 0x40

#define I2C_setup(state, mode, clk) do{ \
 bit_set(P_SW2, 7); \
 I2CCFG = (state | mode | (clk & 0x3F)); \
 bit_clr(P_SW2, 7); \
 }while(0)

void I2C_wait(void)
{
 unsigned int t = I2C_timeout;

 while((check_I2C_master_flag == FALSE) && (t > 0))
 {
 t--;
 delay_ms(1);
 };

 clear_I2C_master_flag;
}

void I2C_start(void)
{
 bit_set(P_SW2, 7);
 I2CMSCR = 0x01;
 I2C_wait();
 bit_clr(P_SW2, 7);
}

void I2C_stop(void)
{
 bit_set(P_SW2, 7);
 I2CMSCR = 0x06;
 I2C_wait();
 bit_clr(P_SW2, 7);
}

void I2C_write(unsigned char value)
{
 bit_set(P_SW2, 7);
 I2CTXD = value;
 I2CMSCR = 0x02;
 I2C_wait();
 I2CMSCR = 0x03;
 I2C_wait();
 bit_clr(P_SW2, 7);

Page | 154

}

unsigned char I2C_read(unsigned char ACK_state)
{
 unsigned char value = 0x00;

 bit_set(P_SW2, 7);
 I2CMSCR = 0x04;
 I2C_wait();
 value = I2CRXD;
 I2CMSST = ~ACK_state;
 I2CMSCR = 0x05;
 I2C_wait();
 bit_clr(P_SW2, 7);

 return value;
}

DHT12.h

#define I2C_W 0x00
#define I2C_R 0x01

#define no_of_bytes_to_read 0x05

#define DHT12_I2C_address 0xB8

#define no_error 0x00
#define CRC_error 0x01

void DHT12_init(void);
unsigned char DHT12_CRC(unsigned char *array_values);
unsigned char DHT12_read_byte(unsigned char address);
unsigned char DHT12_get_data(float *DHT12_RH, float *DHT12_T);

DHT12.c

#include "DHT12.h"

void DHT12_init(void)
{
 I2C_pin_option(0x00);
 I2C_setup(I2C_enable, I2C_master_mode, 0xFF);
 delay_ms(100);
}

unsigned char DHT12_CRC(unsigned char *array_values)
{
 signed char i = 0x03;
 unsigned char crc_result = 0x00;

 while(i > -1)
 {
 crc_result += array_values[i];
 i--;
 }

 return crc_result;
}

unsigned char DHT12_read_byte(unsigned char address)
{
 unsigned char value = 0x00;

 I2C_start();
 I2C_write(DHT12_I2C_address);
 I2C_write(address);

Page | 155

 I2C_start();
 I2C_write(DHT12_I2C_address | I2C_R);
 value = I2C_read(0);
 I2C_stop();

 return value;
}

unsigned char DHT12_get_data(float *DHT12_RH, float *DHT12_T)
{
 signed char i = no_of_bytes_to_read;

 unsigned char values[0x05] = {0x00, 0x00, 0x00, 0x00, 0x00};

 while(i > 0x00)
 {
 values[(no_of_bytes_to_read - i)] = DHT12_read_byte((no_of_bytes_to_read - i));
 i--;
 };

 if(values[0x04] == DHT12_CRC(values))
 {
 *DHT12_RH = (((float)values[0x00]) + (((float)values[0x01]) * 0.1));
 *DHT12_T = (((float)values[0x02]) + (((float)values[0x03]) * 0.1));

 return no_error;
 }

 else
 {
 return CRC_error;
 }
}

main.c

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"
#include "DHT12.c"

void setup(void);

void main(void)
{
 unsigned char state = 0x00;

 float T = 0.0;
 float RH = 0.0;

 setup();

 LCD_goto(0, 0);
 LCD_putstr("R.H / %:");
 LCD_goto(0, 1);
 LCD_putstr("Temp/ C:");
 print_symbol(5, 1, 0);

 while(1)
 {
 state = DHT12_get_data(&RH, &T);

 switch(state)
 {
 case no_error:
 {
 print_F(11, 0, RH, 1);
 print_F(11, 1, T, 1);
 break;
 }

Page | 156

 default:
 {
 LCD_goto(12, 0);
 LCD_putstr("--.-");
 LCD_goto(12, 1);
 LCD_putstr("--.-");
 }
 }

 P55_toggle;
 delay_ms(400);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P55_open_drain_mode;

 LCD_init();
 LCD_clear_home();
 load_custom_symbol();

 DHT12_init();
}

Schematic

Explanation

I2C.h header file describes how the I2C hardware will work. Firstly, I2C hardware pin pairs can be any

of the following combinations:

/*
SCL SDA Hex Option
P1.5 P1.4 0x00 option 1
P2.5 P2.4 0x10 option 2
P7.7 P7.6 0x20 option 3
P3.2 P3.3 0x30 option 4
*/

#define I2C_pin_option(value) do{P_SW2 |= value;}while(0)

Page | 157

Secondly, we have the following I2C library functions that control I2C-related registers. Mainly, we

would need these functions in order to properly use the I2C hardware. These the commonly used

ones. Details of register handling can be avoided in this way.

void I2C_start(void)
void I2C_stop(void)
void I2C_write(unsigned char value)
unsigned char I2C_read(unsigned char ACK_state)

I have avoided interrupt-based I2C communication because I2C slave devices generally do not send

out data without request from master device and master device only initiates data transaction when

needed. There is no need to make things unnecessarily complicated.

Before using I2C hardware, we have to set it up and I2C_setup function exactly does that. It dictates

mode of operation and I2C bus clock speed.

I2C_setup(I2C_enable, I2C_master_mode, 0xFF);

For demoing I2C communication, Aosong’s DHT12 relative humidity-temperature sensor is used. This

device is pretty simple to use.

The timing diagram shown above depicts that the entire sequence of data transfer is a typical I2C read.

However, to simplify the task of reading the sensor, I coded the read function to read the I2C bus in

byte format rather than in word format. The reading process is a usual I2C read.

unsigned char DHT12_read_byte(unsigned char address)
{
 unsigned char value = 0x00;

 I2C_start();
 I2C_write(DHT12_I2C_address);
 I2C_write(address);

 I2C_start();
 I2C_write(DHT12_I2C_address | I2C_R);
 value = I2C_read(0);
 I2C_stop();

 return value;
}

Since we have to take care of Cyclic Redundancy Check (CRC) in order to ensure data integrity several

byte reads are done and the read data are stored in an array. The array consists of two bytes of relative

humidity data followed by two bytes of temperature data and a CRC byte - five bytes in total. After

getting all the values from the sensor, CRC check is performed. If there is no CRC error, the

temperature and relative humidity data are processed or else CRC error is flagged.

Page | 158

unsigned char DHT12_get_data(float *DHT12_RH, float *DHT12_T)
{
 signed char i = no_of_bytes_to_read;
 unsigned char values[0x05] = {0x00, 0x00, 0x00, 0x00, 0x00};

 while(i > 0x00)
 {
 values[(no_of_bytes_to_read - i)] = DHT12_read_byte((no_of_bytes_to_read - i));
 i--;
 };

 if(values[0x04] == DHT12_CRC(values))
 {
 *DHT12_RH = (((float)values[0x00]) + (((float)values[0x01]) * 0.1));
 *DHT12_T = (((float)values[0x02]) + (((float)values[0x03]) * 0.1));

 return no_error;
 }
 else
 {
 return CRC_error;
 }
}

DH12’s CRC check is straight-forward. The temperature and humidity bytes are summed up and

checked against the sent-out CRC value. If the values are same then there is no error in sent data.

unsigned char DHT12_CRC(unsigned char *array_values)
{
 signed char i = 0x03;
 unsigned char crc_result = 0x00;

 while(i > -1)
 {
 crc_result += array_values[i];
 i--;
 }

 return crc_result;
}

In the main, the sensor is read and the temperature-relative humidity data are displayed on an LCD

display.

Demo

Demo video link: https://youtu.be/LstlvrywyEs.

https://youtu.be/LstlvrywyEs

Page | 159

SPI

Serial Peripheral Interface (SPI) communication is another short-distance synchronous communication

method like I2C. Unlike I2C, SPI requires 3 or more connections but the bus speed is significantly higher

than that of I2C’s. Except chip selection pin, all SPI devices in a SPI bus can share the same set of

communication pins. Typical full-duplex SPI bus requires four basic I/O pins. Their naming suggests

their individual purpose.

◆ Master-In-Slave-Out (MIS0) connected to Slave-Data-Out (SDO).

◆ Master-Out-Slave-In (MOSI) connected to Slave-Data-In (SDI).

◆ Serial Clock (SCLK) connected to Slave Clock (SCK).

◆ Slave Select (SS) connected to Chip Select (CS).

Since SPI bus is very fast, it is widely used for interfacing displays, flash memories, etc. that needs fast

responsiveness.

SPI is can visualized as a shift register that shifts data in and out one-by-one with clock pulse

transitions. Like I2C bus, there can be one master device in a SPI bus and virtually unlimited amount

of slave devices only separated by slave selection pins. Master sends commands to slave(s) by

generating clock signals and selecting one slave device at a time. Selected slave responds to

commands sent by the master.

In general, if you wish to know more about SPI bus here are some cool links:

⚫ https://learn.mikroe.com/spi-bus

⚫ https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

⚫ http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf

⚫ http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus

⚫ https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi

⚫ http://www.circuitbasics.com/basics-of-the-spi-communication-protocol

https://learn.mikroe.com/spi-bus
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus
https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi
http://www.circuitbasics.com/basics-of-the-spi-communication-protocol

Page | 160

Code

SPI.h

/*
SS MOSI MISO SCLK Hex Option
P1.2 P1.3 P1.4 P1.5 0x00 option 1
P2.2 P2.3 P2.4 P2.5 0x04 option 2
P7.4 P7.5 P7.6 P7.7 0x08 option 3
P3.5 P3.4 P3.3 P3.2 0x0C option 4
*/

#define SPI_clear do{\
 SPCTL = 0x00; \
 SPSTAT = 0xC0; \
 SPDAT = 0x00;}while(0)

#define SPI_timeout 300

#define SPI_pin_option(value) do{P_SW1 |= value;}while(0)

#define SPI_pins(value)

#define SPI_disable bit_clr(SPCTL, 6)
#define SPI_enable bit_set(SPCTL, 6)

//clk
#define SPI_clk_sysclk_div_4 0x00
#define SPI_clk_sysclk_div_8 0x01
#define SPI_clk_sysclk_div_16 0x02
#define SPI_clk_sysclk_div_32 0x03

//MS
#define SPI_slave 0x00
#define SPI_master 0x10

//data_orientation
#define SPI_MSB_first 0x00
#define SPI_LSB_first 0x20

//CPHA
#define SPI_CPHA_leading 0x00
#define SPI_CPHA_trailing 0x04

//CPOL
#define SPI_CLK_CPOL_idle_low 0x00
#define SPI_CLK_CPOL_idle_high 0x08

//ss
#define SPI_SS_not_ignored 0x00
#define SPI_SS_ignored 0x80

#define SPI_setup(clk, MS, data_orientation, CPHA, CPOL, ss) do{ \
 SPI_clear; \
 SPCTL |= (clk | MS \
 | data_orientation \
 | CPHA \
 | CPOL \
 | ss); \
 }while(0)

unsigned char SPI_transfer(unsigned char write_value)
{
 unsigned char read_value = 0x00;
 unsigned int timeout = SPI_timeout;

Page | 161

 SPDAT = write_value;
 while((!check_SPI_flag) && (timeout > 0))
 {
 timeout--;
 delay_ms(1);
 };

 clear_SPI_flag;
 clear_SPI_write_collision_flag;

 read_value = SPDAT;

 return read_value;
}

DS3234.h

#define read_cmd 0x00
#define write_cmd 0x80

#define second_reg 0x00
#define minute_reg 0x01
#define hour_reg 0x02
#define day_reg 0x03
#define date_reg 0x04
#define month_reg 0x05
#define year_reg 0x06
#define alarm1sec_reg 0x07
#define alarm1min_reg 0x08
#define alarm1hr_reg 0x09
#define alarm1date_reg 0x0A
#define alarm2min_reg 0x0B
#define alarm2hr_reg 0x0C
#define alarm2date_reg 0x0D
#define control_reg 0x0E
#define status_reg 0x0F
#define ageoffset_reg 0x10
#define tempMSB_reg 0x11
#define tempLSB_reg 0x12
#define tempdisable_reg 0x13
#define sramaddr_reg 0x18
#define sramdata_reg 0x19

#define am 0
#define pm 1
#define hr24 0
#define hr12 1

#define DS3234_SS_HIGH P12_high
#define DS3234_SS_LOW P12_low

unsigned char s = 10;
unsigned char min = 10;
unsigned char hr = 10;
unsigned char ampm = pm;
unsigned char dy = 1;
unsigned char dt = 1;
unsigned char mt = 1;
unsigned char yr = 1;
unsigned char hr_format = hr12;

unsigned char bcd_to_decimal(unsigned char d);
unsigned char decimal_to_bcd(unsigned char d);
void DS3234_init(void);
unsigned char DS3234_read(unsigned char addr);
void DS3234_write(unsigned char addr, unsigned char value);
float DS3234_get_temp(void);
void DS3234_write_SRAM(unsigned char addr, unsigned char value);
unsigned char DS3234_read_SRAM(unsigned char addr);
void DS3234_get_time(unsigned short hour_format);
void DS3234_get_date(void);
void DS3234_set_time(unsigned char hSet, unsigned char mSet, unsigned char sSet, unsigned char am_pm_state, u
nsigned char hour_format);

Page | 162

void DS3234_set_date(unsigned char daySet, unsigned char dateSet, unsigned char monthSet, unsigned char yearS
et);

DS3234.c

#include "DS3234.h"

unsigned char bcd_to_decimal(unsigned char d)
{
 return ((d & 0x0F) + (((d & 0xF0) >> 4) * 10));
}

unsigned char decimal_to_bcd(unsigned char d)
{
 return (((d / 10) << 4) & 0xF0) | ((d % 10) & 0x0F);
}

void DS3234_init(void)
{
 P12_push_pull_mode;
 DS3234_SS_HIGH;

 SPI_pin_option(0x00);

 SPI_setup(SPI_clk_sysclk_div_16, \
 SPI_master, \
 SPI_MSB_first, \
 SPI_CPHA_trailing, \
 SPI_CLK_CPOL_idle_low, \
 SPI_SS_ignored);

 SPI_enable;

 DS3234_write(control_reg, 0x20);
 DS3234_write(status_reg, 0x48);
 DS3234_set_time(hr, min, s, ampm, hr_format);
 DS3234_set_date(dy, dt, mt, yr);
}

unsigned char DS3234_read(unsigned char addr)
{
 unsigned char value = 0;

 DS3234_SS_LOW;
 SPI_transfer(addr | read_cmd);
 value = SPI_transfer(0x00);
 DS3234_SS_HIGH;

 return value;
}

void DS3234_write(unsigned char addr, unsigned char value)
{
 unsigned long temp = 0;

 DS3234_SS_LOW;
 temp = (addr | write_cmd);
 SPI_transfer(temp);
 SPI_transfer(value);
 DS3234_SS_HIGH;
}

float DS3234_get_temp(void)
{
 float t = 0;
 signed char highByte = 0;
 unsigned char lowByte = 0;

 highByte = DS3234_read(tempMSB_reg);

Page | 163

 lowByte = DS3234_read(tempLSB_reg);

 lowByte >>= 6;
 t = (lowByte & 0x03);
 t *= 0.25;
 t += highByte;

 return t;
}

void DS3234_write_SRAM(unsigned char addr, unsigned char value)
{
 DS3234_write(sramaddr_reg, addr);
 DS3234_write(sramdata_reg, value);
}

unsigned char DS3234_read_SRAM(unsigned char addr)
{
 unsigned char value = 0;

 DS3234_SS_LOW;
 SPI_transfer(sramaddr_reg);
 SPI_transfer(addr);
 value = DS3234_read(sramdata_reg);
 DS3234_SS_HIGH;

 return value;
}

void DS3234_get_time(unsigned short hour_format)
{
 unsigned char tmp = 0;

 s = DS3234_read(second_reg);
 s = bcd_to_decimal(s);
 min = DS3234_read(minute_reg);
 min = bcd_to_decimal(min);
 tmp = DS3234_read(hour_reg);

 switch(hour_format)
 {
 case hr12:
 {
 ampm = (tmp & 0x20);
 ampm >>= 5;
 hr = (tmp & 0x1F);
 hr = bcd_to_decimal(hr);
 break;
 }

 default:
 {
 hr = (0x3F & tmp);
 hr = bcd_to_decimal(hr);
 break;
 }
 }
}

void DS3234_get_date(void)
{
 yr = DS3234_read(year_reg);
 yr = bcd_to_decimal(yr);
 mt = (0x1F & DS3234_read(month_reg));
 mt = bcd_to_decimal(mt);
 dt = (0x3F & DS3234_read(date_reg));
 dt = bcd_to_decimal(dt);
 dy = (0x07 & DS3234_read(day_reg));
 dy = bcd_to_decimal(dy);
}

Page | 164

void DS3234_set_time(unsigned char hSet, unsigned char mSet, unsigned char sSet, unsigned char am_pm_state, u
nsigned char hour_format)
{
 unsigned char tmp = 0;

 DS3234_write(second_reg, (decimal_to_bcd(sSet)));
 DS3234_write(minute_reg, (decimal_to_bcd(mSet)));

 switch(hour_format)
 {
 case hr12:
 {
 switch(am_pm_state)
 {
 case pm:
 {
 tmp = 0x20;
 break;
 }

 default:
 {
 tmp = 0x00;
 break;
 }
 }

 DS3234_write(hour_reg, ((tmp | 0x40 | (0x1F & (decimal_to_bcd(hSet))))));
 break;
 }

 default:
 {
 DS3234_write(hour_reg, (0xBF & (0x3F & (decimal_to_bcd(hSet)))));
 break;
 }
 }
}

void DS3234_set_date(unsigned char daySet, unsigned char dateSet, unsigned char monthSet, unsigned char yearS
et)
{
 DS3234_write(day_reg, (decimal_to_bcd(daySet)));
 DS3234_write(date_reg, (decimal_to_bcd(dateSet)));
 DS3234_write(month_reg, (decimal_to_bcd(monthSet)));
 DS3234_write(year_reg, (decimal_to_bcd(yearSet)));
}

main.c

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"
#include "DS3234.c"

#define SET 1
#define INC 2
#define SAVE 3

#define keypad_dly 10
#define disp_dly 90

void setup(void);
unsigned char get_keypad(void);
void display_value(unsigned char y_pos, unsigned char x_pos, unsigned char value);
void show_temperature();
void display_time(void);
void get_date_time_data(void);
unsigned char change_value(unsigned char y_pos, unsigned char x_pos, unsigned char value, unsigned char max_v
alue, unsigned char min_value);
void setting(void);

Page | 165

void show_day(unsigned char value);

void main(void)
{

 setup();

 while(1)
 {
 P55_toggle;
 setting();
 get_date_time_data();
 show_temperature();
 display_time();
 delay_ms(200);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P40_input_mode;
 P41_input_mode;
 P42_input_mode;

 P55_open_drain_mode;

 DS3234_init();

 LCD_init();
 LCD_clear_home();
 load_custom_symbol();
}

unsigned char get_keypad()
{
 if(!P40_get_input)
 {
 delay_ms(keypad_dly);
 return SET;
 }

 else if(!P41_get_input)
 {
 delay_ms(keypad_dly);
 return INC;
 }

 else if(!P42_get_input)
 {
 delay_ms(keypad_dly);
 return SAVE;
 }

 else
 {
 return 0;
 }
}

void display_value(unsigned char y_pos, unsigned char x_pos, unsigned char value)
{
 unsigned char ch = 0x00;

 ch = (value / 10);
 LCD_goto((x_pos - 1), (y_pos - 1));
 LCD_putchar((ch + 0x30));
 ch = (value % 10);
 LCD_goto(x_pos, (y_pos - 1));
 LCD_putchar((ch + 0x30));
}

Page | 166

void display_time()
{
 display_value(1, 1, hr);
 LCD_goto(2, 0);
 LCD_putstr(":");
 display_value(1, 4, min);
 LCD_goto(5, 0);
 LCD_putstr(":");

 display_value(1, 7, s);

 switch(hr_format)
 {
 case hr12:
 {
 switch(ampm)
 {
 case pm:
 {
 LCD_goto(9, 0);
 LCD_putstr("PM");
 break;
 }
 default:
 {
 LCD_goto(9, 0);
 LCD_putstr("AM");
 break;
 }
 }
 break;
 }
 default:
 {
 LCD_goto(9, 0);
 LCD_putstr(" ");
 break;
 }
 }

 display_value(2, 1, dt);
 LCD_goto(2, 1);
 LCD_putstr("/");
 display_value(2, 4, mt);
 LCD_goto(5, 1);
 LCD_putstr("/");
 display_value(2, 7, yr);
 show_day(dy);
}

void show_temperature()
{
 float t = 0;
 unsigned char temp = 0;

 t = DS3234_get_temp();

 temp = t;
 display_value(2, 10, temp);
 LCD_goto(11, 1);
 LCD_putstr(".");
 temp = ((t - temp) * 100);
 display_value(2, 13, temp);
 print_symbol(14, 1, 0);
 LCD_goto(15, 1);
 LCD_putstr("C");
}

void get_date_time_data()
{
 DS3234_get_date();
 DS3234_get_time(hr_format);
}

Page | 167

unsigned char change_value(unsigned char y_pos, unsigned char x_pos, unsigned char value, unsigned char max_v
alue, unsigned char min_value)
{
 while(TRUE)
 {
 if(get_keypad() == INC)
 {
 value++;
 }

 if(value > max_value)
 {
 value = min_value;
 }

 LCD_goto((x_pos - 1), (y_pos - 1));
 LCD_putstr(" ");
 delay_ms(disp_dly);

 display_value(y_pos, x_pos, value);
 delay_ms(disp_dly);

 if(get_keypad() == SAVE)
 {
 while(get_keypad() == SAVE);
 return value;
 }
 }
}

void setting()
{
 bit set_cmd;
 unsigned char tmp = 0;

 set_cmd = 0;
 if(get_keypad() == SET)
 {
 while(get_keypad() == SET);
 set_cmd = 1;
 }

 while(set_cmd)
 {
 while(1)
 {
 if(get_keypad() == INC)
 {
 tmp++;
 }
 if(tmp > 2)
 {
 tmp = 0;
 }

 LCD_goto(9, 0);
 LCD_putstr(" ");

 delay_ms(disp_dly);
 switch(tmp)
 {
 case 1:
 {
 LCD_goto(9, 0);
 LCD_putstr("AM");
 ampm = am;
 hr_format = hr12;
 break;
 }

 case 2:
 {
 LCD_goto(9, 0);
 LCD_putstr("PM");
 ampm = pm;
 hr_format = hr12;
 break;

Page | 168

 }

 default:
 {
 LCD_goto(9, 0);
 LCD_putstr("24");
 hr_format = hr24;
 break;
 }
 }

 delay_ms(disp_dly);

 if(get_keypad() == SAVE)
 {
 break;
 }
 }
 s = change_value(1, 7, s, 59, 0);
 min = change_value(1, 4, min, 59, 0);

 switch(hr_format)
 {
 case hr12:
 {
 hr = change_value(1, 1, hr, 12, 1);
 break;
 }
 default:
 {
 hr = change_value(1, 1, hr, 23, 0);
 break;
 }
 }

 dt = change_value(2, 1, dt, 31, 1);
 mt = change_value(2, 4, mt, 12, 1);
 yr = change_value(2, 7, yr, 99, 0);

 tmp = dy;
 while(1)
 {
 if(get_keypad() == INC)
 {
 tmp++;
 }
 if(tmp > 7)
 {
 tmp = 1;
 }

 LCD_goto(13, 0);
 LCD_putstr(" ");
 delay_ms(disp_dly);
 show_day(tmp);
 delay_ms(disp_dly);

 if(get_keypad() == SAVE)
 {
 dy = tmp;
 break;
 }
 }

 DS3234_set_time(hr, min, s, ampm, hr_format);
 DS3234_set_date(dy, dt, mt, yr);
 set_cmd = 0;
 }
}

void show_day(unsigned char value)
{
 LCD_goto(13, 0);

 switch(value)
 {
 case 1:

Page | 169

 {
 LCD_putstr("SUN");
 break;
 }
 case 2:
 {
 LCD_putstr("MON");
 break;
 }
 case 3:
 {
 LCD_putstr("TUE");
 break;
 }
 case 4:
 {
 LCD_putstr("WED");
 break;
 }
 case 5:
 {
 LCD_putstr("THR");
 break;
 }
 case 6:
 {
 LCD_putstr("FRI");
 break;
 }
 case 7:
 {
 LCD_putstr("SAT");
 break;
 }
 }
}

Schematic

Explanation

As with other hardware, the built-in SPI hardware also has many alternative pin options. The SPI

header file describes these pin combinations.

/*
SS MOSI MISO SCLK Hex Option
P1.2 P1.3 P1.4 P1.5 0x00 option 1
P2.2 P2.3 P2.4 P2.5 0x04 option 2
P7.4 P7.5 P7.6 P7.7 0x08 option 3
P3.5 P3.4 P3.3 P3.2 0x0C option 4
*/

#define SPI_pin_option(value) do{P_SW1 |= value;}while(0)

Page | 170

To use SPI peripheral, we have to set it up first as shown below:

SPI_setup(SPI_clk_sysclk_div_16, \
 SPI_master, \
 SPI_MSB_first, \
 SPI_CPHA_trailing, \
 SPI_CLK_CPOL_idle_low, \
 SPI_SS_ignored);

SPI_enable;

SPI_setup function sets up SPI bus clock, device role, data sequence, clock phase and polarity

alongside built-in hardware slave select pin operation state. After having these set up, the SPI

hardware is ready to be enabled.

Since SPI functions like a ring shift-register, only one function is needed for SPI bus data transactions.

The following SPI_transfer function is used for this purpose. First data is written and then read.

Reading and writing SPDAT register automatically generates SPI bus clock.

unsigned char SPI_transfer(unsigned char write_value)
{
 unsigned char read_value = 0x00;
 unsigned int timeout = SPI_timeout;

 SPDAT = write_value;
 while((!check_SPI_flag) && (timeout > 0))
 {
 timeout--;
 delay_ms(1);
 };

 clear_SPI_flag;
 clear_SPI_write_collision_flag;

 read_value = SPDAT;

 return read_value;
}

SPI peripheral is demoed here using DS3234 Real-Time Clock (RTC). The first three functions are what

we basically need to fully make the RTC communicate with our STC micro. The rest of the RTC library

functions are extensions of the DS3234 read and write functions. The read and write functions are

typically what we see with other SPI devices. I recommend readers to check the timing diagrams of

DS3234 from its datasheet and check the code in order to properly realize the SPI working principle in

conjunction with the code presented here. Note that since the hardware slave select pin is not used,

slave selection is done in code by changing the state of a GPIO pin.

void DS3234_init(void)
{
 P12_push_pull_mode;
 DS3234_SS_HIGH;

 SPI_pin_option(0x00);

 SPI_setup(SPI_clk_sysclk_div_16, \
 SPI_master, \
 SPI_MSB_first, \
 SPI_CPHA_trailing, \
 SPI_CLK_CPOL_idle_low, \
 SPI_SS_ignored);

 SPI_enable;

 DS3234_write(control_reg, 0x20);
 DS3234_write(status_reg, 0x48);
 DS3234_set_time(hr, min, s, ampm, hr_format);

Page | 171

 DS3234_set_date(dy, dt, mt, yr);
}

unsigned char DS3234_read(unsigned char addr)
{
 unsigned char value = 0;

 DS3234_SS_LOW;
 SPI_transfer(addr | read_cmd);
 value = SPI_transfer(0x00);
 DS3234_SS_HIGH;

 return value;
}

void DS3234_write(unsigned char addr, unsigned char value)
{
 unsigned long temp = 0;

 DS3234_SS_LOW;
 temp = (addr | write_cmd);
 SPI_transfer(temp);
 SPI_transfer(value);
 DS3234_SS_HIGH;
}

Demo

Demo video link: https://youtu.be/MeiDFeziIFk.

https://youtu.be/MeiDFeziIFk

Page | 172

UART

Serial communication is probably the most widely used communication method. It is simple to

implement and can be used to communicate with a computer literally directly without needing too

many extra external hardware. Serial communication also has the distance advantage over other

communication interfaces. Serial communication can be implemented using UART hardware

peripherals of STC micros. Many sensors, communication devices like GSM modems and RF devices,

RFIDs and other external devices use this simple and time-proven interface for communicating with

host micros. UART is also the backbone of other communication methods like MODBUS, IrDA, LIN, etc.

To learn more about UART visit the following link:

https://learn.mikroe.com/uart-serial-communication

Code

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"

void setup(void);

void main(void)
{
 unsigned char msg1[10] = {"MicroArena"};
 unsigned char msg2[10] = {"SShahryiar"};

 char i = 0x00;

 char rcv_1 = 0x00;
 char rcv_4 = 0x00;

 setup();

 LCD_goto(0, 0);
 LCD_putstr("TXD1: ");
 LCD_goto(10, 0);
 LCD_putstr("RXD1: ");

 LCD_goto(0, 1);
 LCD_putstr("TXD4: ");
 LCD_goto(10, 1);
 LCD_putstr("RXD4: ");

 while(1)
 {

https://learn.mikroe.com/uart-serial-communication

Page | 173

 for(i = 0; i < 10; i++)
 {
 UART1_write_buffer(msg1[i]);
 UART4_write_buffer(msg2[i]);

 LCD_goto(5, 0);
 LCD_putchar(msg1[i]);
 LCD_goto(5, 1);
 LCD_putchar(msg2[i]);

 rcv_1 = UART1_read_buffer();
 rcv_4 = UART4_read_buffer();

 LCD_goto(15, 0);
 LCD_putchar(rcv_1);
 LCD_goto(15, 1);
 LCD_putchar(rcv_4);

 delay_ms(900);
 }
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 UART1_pin_option(0xC0);
 UART1_init(9600, \
 UART1_baud_source_TMR2, \
 UART1_timer_12T, \
 12000000);

 UART4_pin_option(0x04);
 UART4_init(9600, \
 UART4_baud_source_TMR4, \
 UART4_timer_1T, \
 12000000);

 LCD_init();
 LCD_clear_home();
}

Schematic

Page | 174

Explanation

STC8A8K64S4A12 has four hardware UART peripherals. Of these four, UART1 has some advanced

features that are rarely needed. The rest are pretty much alike. Like other communication hardware

peripherals, pin configuration must be selected as alternative pin arrangements are available.

/*

RXD TXD Hex Option
P0.2 P0.3 0x00 option 1
P5.2 P5.3 0x04 option 2
*/

#define UART4_pin_option(value) do{P_SW2 |= value;}while(0)

UART, although asynchronous, need to transmit and receive data in timed-frame formats and so when

two UART devices need to communicate with each other, they must negotiate a mutually agreed baud

rate or else data will not recognized. It is like tuning to the right radio station for listening the music

channel that we want to listen. Thus, baud rate generation is a very crucial part of UART peripheral.

For baud rate generation, UARTs can either use Timer 2 or other timer having the same number as the

UART itself, for example, in the case of UART3, only Timer 2 and Timer 3 can be used as baud rate

generator. I personally recommend that we keep Timer 2 reserved for other applications or UART2

and use other timers independently as to avoid conflicts in different UART hardware. Yes, I know it

contradicts with my past statement of keeping Timer 2 reserved for UART applications but what else

can be done when multiple UARTs are used in an application. BSP functions take care of everything

internally and so we can focus on coding.

The system clock is set to 12MHz. This is very important because timers are responsible for baud rate

generation and are dependent on system clock.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

To setup UART, we need to specify baud rate, clock source of baud rate generator, i.e., the timer to

be used, its prescale factor and system clock speed in hertz.

UART4_init(9600, \
 UART4_baud_source_TMR4, \
 UART4_timer_1T, \
 12000000);

UART reading and writing is done as shown below.

UART4_write_buffer(msg2[i]);
....
rcv_4 = UART4_read_buffer();

The demo here uses two built-in UARTs - UART1 and UART4, crisscrossed among themselves. Each

transmitting and receiving the other’s message. Whatever each is sending and receiving is also shown

on an LCD display.

Page | 175

Demo

Demo video link: https://youtu.be/5MO5_YcRB_s.

https://youtu.be/5MO5_YcRB_s

Page | 176

RS485 MODBUS

RS485 is basically a long-range reliable industrial version of serial communication. It is a hardware

layer that can support anything from simple serial communication to complex software-based

communication layers. MODBUS is such a software layer or protocol that can be used to reliably

exchange data between devices. MODBUS (particularly MODBUS RTU) is very popular among

industrial devices like energy meters, PLCs and sensor devices. MODBUS has some similarity with I2C

in some regards.

Another similar communication medium is the Controller Area Network (CAN). CAN is not supported

internally by STC microcontrollers unlike some advanced microcontrollers like the STM32s and other

ARMs but with external hardware like MCP2551 and MCP2515 CAN communication can also be

achieved. CAN communication is beyond the scope of this tutorial.

To know more about MODBUS, visit these links:

• https://en.wikipedia.org/wiki/Modbus

• https://modbus.org/docs/PI_MBUS_300.pdf

• https://modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

https://en.wikipedia.org/wiki/Modbus
https://modbus.org/docs/PI_MBUS_300.pdf
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

Page | 177

Code

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD.c"
#include "lcd_print.c"

#define DIR_RX P12_low
#define DIR_TX P12_high

#define TX_buffer_length 8
#define RX_buffer_length 10

unsigned char cnt = 0x00;
unsigned char RX_buffer[RX_buffer_length];

static const unsigned char TX_buffer[TX_buffer_length] = {0x01, 0x03, 0x00, 0x00, 0x00, 0x02, 0xC4, 0x0B};

void setup(void);
void flush_RX_buffer(void);
void send_read_command(void);
unsigned int make_word(unsigned char HB, unsigned char LB);
void get_HB_LB(unsigned int value, unsigned char *HB, unsigned char *LB);
unsigned int MODBUS_RTU_CRC16(unsigned char *data_input, unsigned char data_length);

void UART_2_ISR(void)
interrupt 8
{
 if(check_UART_2_RX_flag)
 {
 RX_buffer[cnt++] = UART2_read_buffer();
 }
}

void main(void)
{
 unsigned int value = 0x0000;
 unsigned int CRC_check_1 = 0x0000;
 unsigned int CRC_check_2 = 0x0000;

 setup();

 LCD_goto(0, 0);
 LCD_putstr("R.H / %:");
 LCD_goto(0, 1);
 LCD_putstr("Temp/ C:");
 print_symbol(5, 1, 0);

 while(1)
 {
 send_read_command();

 CRC_check_1 = MODBUS_RTU_CRC16(RX_buffer, 7);
 CRC_check_2 = make_word(RX_buffer[8], RX_buffer[7]);

 if(CRC_check_1 == CRC_check_2)
 {
 value = make_word(RX_buffer[5], RX_buffer[6]);
 print_F(11, 0, (value / 10.0), 1);

 value = make_word(RX_buffer[3], RX_buffer[4]);
 print_F(11, 1, (value / 10.0), 1);
 }

 else
 {
 LCD_goto(12, 0);
 LCD_putstr("--.-");

Page | 178

 LCD_goto(12, 1);
 LCD_putstr("--.-");
 }

 P55_toggle;
 delay_ms(1000);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 P12_push_pull_mode;
 P55_open_drain_mode;

 LCD_init();
 LCD_clear_home();
 load_custom_symbol();

 UART2_pin_option(0x00);

 UART2_init(9600, \
 UART2_timer_1T, \
 12000000);

 _enable_UART_2_interrupt;
 _enable_global_interrupt;
}

void flush_RX_buffer(void)
{
 signed char i = (RX_buffer_length - 1);

 while(i > -1)
 {
 RX_buffer[i] = 0x00;
 i--;
 };
}

void send_read_command(void)
{
 unsigned char i = 0x00;

 flush_RX_buffer();

 DIR_TX;

 for(i = 0; i < TX_buffer_length; i++)
 {
 UART2_write_buffer(TX_buffer[i]);
 }

 cnt = 0;
 DIR_RX;

 delay_ms(600);
}

unsigned int make_word(unsigned char HB, unsigned char LB)
{
 unsigned int tmp = 0;

 tmp = HB;
 tmp <<= 8;
 tmp |= LB;

 return tmp;
}

void get_HB_LB(unsigned int value, unsigned char *HB, unsigned char *LB)

Page | 179

{
 *LB = (value & 0x00FF);
 *HB = ((value & 0xFF00) >> 8);
}

unsigned int MODBUS_RTU_CRC16(unsigned char *data_input, unsigned char data_length)
{
 static const unsigned int CRC_table[256] =
 {
 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
 };

 unsigned char temp = 0;
 unsigned int CRC_word = 0xFFFF;

 while(data_length--)
 {
 temp = *data_input++ ^ CRC_word;
 CRC_word >>= 8;
 CRC_word ^= CRC_table[temp];
 }

 return CRC_word;
}

Page | 180

Schematic

Explanation

In this example, a MODBUS-based SHT20 relative humidity and temperature sensor is read with a STC

micro. The sensor accepts MODBUS RTU data frames.

The setup is similar to the one we have already seen in the UART example and it should easy by now.

The only exceptions are the UART module and the use of its interrupt.

CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

P12_push_pull_mode;
P55_open_drain_mode;

UART2_pin_option(0x00);

UART2_init(9600, \
 UART2_timer_1T, \
 12000000);

_enable_UART_2_interrupt;
_enable_global_interrupt;

The UART’s interrupt is used for receiving data only.

void UART_2_ISR(void)
interrupt 8
{
 if(check_UART_2_RX_flag)
 {
 RX_buffer[cnt++] = UART2_read_buffer();
 }
}

Page | 181

For sending data, the following function is used. In this function, previously received data are cleared

first in order to make the micro ready to receive new batch of data and to make sure that past data

do not make any conflict with the new ones. The onboard MAX485’s data direction is set to

transmission mode and the transmission (TX) buffer data are sent via UART. MAX485’s mode

operation is reset back to reception mode in order to receive new data.

static const unsigned char TX_buffer[TX_buffer_length] = {0x01, 0x03, 0x00, 0x00, 0x00, 0x02, 0xC4, 0x0B};

....

void send_read_command(void)
{
 unsigned char i = 0x00;

 flush_RX_buffer();

 DIR_TX;

 for(i = 0; i < TX_buffer_length; i++)
 {
 UART2_write_buffer(TX_buffer[i]);
 }

 cnt = 0;
 DIR_RX;

 delay_ms(600);
}

The TX buffer contains the following information in the following order. This is the standard frame

that should be sent by a host device to read holding registers. MODBUS RTU strictly prohibits other

data frame formats and doing so will only lead to errors.

Page | 182

When the sensor receives these bytes in this order, it responds back with a reception or RX frame

which is something like the frame shown below. This frame is similar to the TX frame but the important

stuffs are the relative humidity and temperature data. These are the stuff that we mainly need. The

values in frame shown below is just for giving an example.

As per MODBUS RTU frame shown above, the slave ID is 0x01, the function code is 0x03 and 4 data

bytes have been sent by the sensor along with the CRC fields. Function code 0x03 stands for reading

holding registers. The temperature and the relative humidity are computed according to the

calculation shown below:

Data Field
High

Byte

Low

Byte
Word

Integer

(I)

Decimal

(D = I/10)
Unit

Temperature 0x01 0x23 0x0123 291 29.1 ⁰C

Relative Humidity 0x02 0x02 0x0202 514 51.4 %

The table above shows that the high and low bytes are combined to make word and the word is divided

by 10 to get desired outputs.

For more information on MODBUS, please refer to the docs mentioned in the beginning of this section.

MODBUS RTU, itself, is a big topic and it is not possible to fully cover it in this tutorial.

The code runs by querying the SHT20 sensor. After receiving all data from sensor, two Cyclic

Redundancy Checks (CRC) are performed in order to ensure that valid and error-free data have been

received. One CRC is the embedded with the RX frame and other is calculated using a CRC lookup

table. Details of CRC lookup table and formula are covered in MODBUS RTU documentations. If CRCs

match then the RX frame is considered to contain valid data and with the RX data, we can compute

relative humidity and temperature values.

send_read_command();

CRC_check_1 = MODBUS_RTU_CRC16(RX_buffer, 7);
CRC_check_2 = make_word(RX_buffer[8], RX_buffer[7]);

if(CRC_check_1 == CRC_check_2)
{
 value = make_word(RX_buffer[5], RX_buffer[6]);
 print_F(11, 0, (value / 10.0), 1);

 value = make_word(RX_buffer[3], RX_buffer[4]);
 print_F(11, 1, (value / 10.0), 1);
}

else
{
 LCD_goto(12, 0);
 LCD_putstr("--.-");
 LCD_goto(12, 1);
 LCD_putstr("--.-");
}

P55_toggle;
delay_ms(1000);

Page | 183

Demo

Demo video link: https://youtu.be/e9XLeAYte_Q.

https://youtu.be/e9XLeAYte_Q

Page | 184

One Wire and Bit-Banging Technique

One wire is not a standard system of communication unlike I2C, SPI and UART because it varies from

device to device. Thus, this form of communication needs more coding rather than hardware-design

consideration.

DS18B20 is a digital temperature sensor that uses one wire communication to communicate with a

host microcontroller. One wire technique relies on time-slotting mechanism in which logical ones and

zeroes are represented by pulses of variable widths. The same technique is used in infrared remote

controllers, various sensors like SONAR sensors, relative humidity and temperature sensors like

DHT22, etc and many other devices. The strategic advantage of one-wire technique is low pin count

but the disadvantage is heavy software implementation and background processing.

Like one wire devices, sometimes we have to deal with hardware devices that do not follow

conventional communication techniques as mentioned earlier and yet again we have to drive these

devices using bit-banging techniques. TM1637 seven-segment display driver is such a device.

Apparently, it uses something similar to I2C as two wires (clock and data) are needed for

communication but in practice it has no similarity with I2C communication at all.

The best way to deal with such cases is to study the device datasheet and look for its timing diagrams.

Timing diagrams along with proprietary protocols are all that would be needed to make libraries for

these devices on our own.

Page | 185

Code

one_wire.h

#define DS18B20_GPIO_init() P30_quasi_bidirectional_mode

#define DS18B20_IN() P30_get_input

#define DS18B20_OUT_LOW() P30_low
#define DS18B20_OUT_HIGH() P30_high

#define TRUE 1
#define FALSE 0

unsigned char onewire_reset(void);
void onewire_write_bit(unsigned char bit_value);
unsigned char onewire_read_bit(void);
void onewire_write(unsigned char value);
unsigned char onewire_read(void);

one_wire.c

#include "one_wire.h"

unsigned char onewire_reset(void)
{
 unsigned char res = FALSE;

 DS18B20_GPIO_init();

 DS18B20_OUT_LOW();
 delay_us(480);
 DS18B20_OUT_HIGH();
 delay_us(60);

 res = DS18B20_IN();
 delay_us(480);

 return res;
}

void onewire_write_bit(unsigned char bit_value)
{
 DS18B20_OUT_LOW();

 if(bit_value)
 {
 delay_us(104);
 DS18B20_OUT_HIGH();
 }
}

unsigned char onewire_read_bit(void)
{
 DS18B20_OUT_LOW();
 DS18B20_OUT_HIGH();
 delay_us(15);

 return(DS18B20_IN());
}

void onewire_write(unsigned char value)
{
 unsigned char s = 0;

 while(s < 8)
 {

Page | 186

 if((value & (1 << s)))
 {
 DS18B20_OUT_LOW();
 nop();
 DS18B20_OUT_HIGH();
 delay_us(60);
 }

 else
 {
 DS18B20_OUT_LOW();
 delay_us(60);
 DS18B20_OUT_HIGH();
 nop();
 }

 s++;
 }
}

unsigned char onewire_read(void)
{
 unsigned char s = 0x00;
 unsigned char value = 0x00;

 while(s < 8)
 {
 DS18B20_OUT_LOW();
 nop();
 DS18B20_OUT_HIGH();

 if(DS18B20_IN())
 {
 value |= (1 << s);
 }

 delay_us(60);

 s++;
 }

 return value;
}

DS18B20.h

#include "one_wire.c"

#define convert_T 0x44
#define read_scratchpad 0xBE
#define write_scratchpad 0x4E
#define copy_scratchpad 0x48
#define recall_E2 0xB8
#define read_power_supply 0xB4
#define skip_ROM 0xCC

#define resolution 12

void DS18B20_init(void);

float DS18B20_get_temperature(void);

DS18B20.c

#include "DS18B20.h"

void DS18B20_init(void)
{
 onewire_reset();

Page | 187

 delay_ms(100);
}

float DS18B20_get_temperature(void)
{
 unsigned char msb = 0x00;
 unsigned char lsb = 0x00;
 register float temp = 0.0;

 onewire_reset();
 onewire_write(skip_ROM);
 onewire_write(convert_T);

 switch(resolution)
 {
 case 12:
 {
 delay_ms(750);
 break;
 }
 case 11:
 {
 delay_ms(375);
 break;
 }
 case 10:
 {
 delay_ms(188);
 break;
 }
 case 9:
 {
 delay_ms(94);
 break;
 }
 }

 onewire_reset();

 onewire_write(skip_ROM);
 onewire_write(read_scratchpad);

 lsb = onewire_read();
 msb = onewire_read();

 temp = msb;
 temp *= 256.0;
 temp += lsb;

 switch(resolution)
 {
 case 12:
 {
 temp *= 0.0625;
 break;
 }
 case 11:
 {
 temp *= 0.125;
 break;
 }
 case 10:
 {
 temp *= 0.25;
 break;
 }
 case 9:
 {
 temp *= 0.5;
 break;
 }
 }

 delay_ms(40);

 return (temp);
}

Page | 188

TM1637.h

#define TM1637_CLK_HIGH P41_high
#define TM1637_CLK_LOW P41_low

#define TM1637_DAT_HIGH P42_high
#define TM1637_DAT_LOW P42_low

#define TM1637_DELAY_US 4

#define TM1637_BRIGHTNESS_MIN 0
#define TM1637_BRIGHTNESS_1 1
#define TM1637_BRIGHTNESS_2 2
#define TM1637_BRIGHTNESS_3 3
#define TM1637_BRIGHTNESS_4 4
#define TM1637_BRIGHTNESS_5 5
#define TM1637_BRIGHTNESS_6 6
#define TM1637_BRIGHTNESS_MAX 7

#define TM1637_POSITION_MAX 4

#define TM1637_CMD_SET_DATA 0x40
#define TM1637_CMD_SET_ADDR 0xC0
#define TM1637_CMD_SET_DSIPLAY 0x80

#define TM1637_SET_DATA_WRITE 0x00
#define TM1637_SET_DATA_READ 0x02
#define TM1637_SET_DATA_A_ADDR 0x00
#define TM1637_SET_DATA_F_ADDR 0x04
#define TM1637_SET_DATA_M_NORM 0x00
#define TM1637_SET_DATA_M_TEST 0x10
#define TM1637_SET_DISPLAY_OFF 0x00
#define TM1637_SET_DISPLAY_ON 0x08

const unsigned char seg_data[10] =
{
 0x3F, // 0
 0x06, // 1
 0x5B, // 2
 0x4F, // 3
 0x66, // 4
 0x6D, // 5
 0x7D, // 6
 0x07, // 7
 0x7F, // 8
 0x6F // 9
};

void TM1637_init(void);
void TM1637_start(void);
void TM1637_stop(void);
unsigned char TM1637_write_byte(unsigned char value);
void TM1637_send_command(unsigned char value);
void TM1637_clear(void);
void TM1637_display_segments(unsigned char position, unsigned char segment_value, unsigned char colon_state);

TM1637.c

#include "TM1637.h"

void TM1637_init(void)
{
 P41_push_pull_mode;
 P42_push_pull_mode;

 TM1637_DAT_LOW;
 TM1637_CLK_LOW;
 TM1637_send_command(TM1637_CMD_SET_DSIPLAY | TM1637_BRIGHTNESS_2 | TM1637_SET_DISPLAY_ON);
 TM1637_clear();
}

Page | 189

void TM1637_start(void)
{
 TM1637_DAT_HIGH;
 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);
 TM1637_DAT_LOW;
}

void TM1637_stop(void)
{

 TM1637_CLK_LOW;
 delay_us(TM1637_DELAY_US);

 TM1637_DAT_LOW;
 delay_us(TM1637_DELAY_US);

 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);

 TM1637_DAT_HIGH;
}

unsigned char TM1637_write_byte(unsigned char value)
{
 unsigned char i = 0x08;
 unsigned char ack = 0x00;

 while(i)
 {
 TM1637_CLK_LOW;
 delay_us(TM1637_DELAY_US);

 if(value & 0x01)
 {
 TM1637_DAT_HIGH;
 }

 else
 {
 TM1637_DAT_LOW;
 }

 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);

 value >>= 1;
 i--;
 }

 TM1637_CLK_LOW;

 delay_us(TM1637_DELAY_US);

 ack = P42_get_input;

 if(ack != 0)
 {
 TM1637_DAT_LOW;
 }

 delay_us(TM1637_DELAY_US);

 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);

 TM1637_CLK_LOW;
 delay_us(TM1637_DELAY_US);

 return (ack);
}

void TM1637_send_command(unsigned char value)
{

Page | 190

 TM1637_start();
 TM1637_write_byte(value);
 TM1637_stop();
}

void TM1637_clear(void)
{
 signed char i = (TM1637_POSITION_MAX - 1);

 while(i > -1)
 {
 TM1637_display_segments(i, 0x00, 0x00);
 i--;
 };
}

void TM1637_display_segments(unsigned char position, unsigned char segment_value, unsigned char colon_state)
{
 if(position == 1)
 {
 switch(colon_state)
 {
 case 1:
 {
 segment_value |= 0x80;
 break;
 }

 default:
 {
 segment_value &= 0x7F;
 break;
 }
 }
 }

 TM1637_send_command(TM1637_CMD_SET_DATA | TM1637_SET_DATA_F_ADDR);
 TM1637_start();
 TM1637_write_byte(TM1637_CMD_SET_ADDR | (position & (TM1637_POSITION_MAX - 1)));
 TM1637_write_byte(segment_value);
 TM1637_stop();
}

main.c

#include "STC8xxx.h"
#include "BSP.h"
#include "DS18B20.c"
#include "TM1637.c"

void setup(void);

void main(void)
{
 signed long t = 0;

 setup();

 while(1)
 {
 t = ((signed long)DS18B20_get_temperature());

 if((t > 999) && (t >= 0))

 {
 TM1637_display_segments(0, 0x40, 0);
 TM1637_display_segments(1, 0x40, 0);

Page | 191

 }

 else
 {
 TM1637_display_segments(0, seg_data[(t / 10)], 0);
 TM1637_display_segments(1, seg_data[(t % 10)], 0);
 }

 TM1637_display_segments(2, 0x63, 0);
 TM1637_display_segments(3, 0x39, 0);

 delay_ms(600);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 TM1637_init();
 DS18B20_init();
}

Schematic

Page | 192

Explanation

DS18B20’s one communication basics are shown below. Notice how time-slotting technique is being

employed.

These timing diagrams are what that have been use to compose the following codes:

void onewire_write_bit(unsigned char bit_value)
{
 DS18B20_OUT_LOW();

 if(bit_value)
 {
 delay_us(104);
 DS18B20_OUT_HIGH();
 }
}

unsigned char onewire_read_bit(void)
{
 DS18B20_OUT_LOW();
 DS18B20_OUT_HIGH();
 delay_us(15);

 return(DS18B20_IN());
}

void onewire_write(unsigned char value)
{
 unsigned char s = 0;

 while(s < 8)

Page | 193

 {
 if((value & (1 << s)))
 {
 DS18B20_OUT_LOW();
 nop();
 DS18B20_OUT_HIGH();
 delay_us(60);
 }

 else
 {
 DS18B20_OUT_LOW();
 delay_us(60);
 DS18B20_OUT_HIGH();
 nop();
 }

 s++;
 }
}

unsigned char onewire_read(void)
{
 unsigned char s = 0x00;
 unsigned char value = 0x00;

 while(s < 8)
 {
 DS18B20_OUT_LOW();
 nop();
 DS18B20_OUT_HIGH();

 if(DS18B20_IN())
 {
 value |= (1 << s);
 }

 delay_us(60);

 s++;
 }

 return value;
}

Details of DS18B20’s one wire communication can be found in the following application notes from

Maxim.

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

https://www.maximintegrated.com/en/app-notes/index.mvp/id/162

These notes are all that are needed for implementing the one wire communication interface for

DS18B20. Please go through these notes. The codes are self-explanatory and are implemented from

the code examples in these app notes.

It is worth mentioning that pin declarations should be checked before actually hooking any device.

#define DS18B20_GPIO_init() P30_quasi_bidirectional_mode

#define DS18B20_IN() P30_get_input

#define DS18B20_OUT_LOW() P30_low
#define DS18B20_OUT_HIGH() P30_high

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126
https://www.maximintegrated.com/en/app-notes/index.mvp/id/162

Page | 194

Bit-banging TM1637 is achieved by implementing what have been documented in the Interface

interpretation section of the datasheet.

The following codes are the coded representation of the communication timing diagram of the device.

Again, I insist readers to go through device datasheet for details and explanation.

void TM1637_start(void)
{
 TM1637_DAT_HIGH;
 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);
 TM1637_DAT_LOW;
}

void TM1637_stop(void)
{

 TM1637_CLK_LOW;
 delay_us(TM1637_DELAY_US);

 TM1637_DAT_LOW;
 delay_us(TM1637_DELAY_US);

 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);

 TM1637_DAT_HIGH;
}

unsigned char TM1637_write_byte(unsigned char value)
{
 unsigned char i = 0x08;
 unsigned char ack = 0x00;

 while(i)
 {
 TM1637_CLK_LOW;
 delay_us(TM1637_DELAY_US);

 if(value & 0x01)
 {
 TM1637_DAT_HIGH;
 }

 else
 {
 TM1637_DAT_LOW;
 }

 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);

 value >>= 1;
 i--;
 }

 TM1637_CLK_LOW;

 delay_us(TM1637_DELAY_US);

 ack = P42_get_input;

 if(ack != 0)

Page | 195

 {
 TM1637_DAT_LOW;
 }

 delay_us(TM1637_DELAY_US);

 TM1637_CLK_HIGH;
 delay_us(TM1637_DELAY_US);

 TM1637_CLK_LOW;
 delay_us(TM1637_DELAY_US);

 return (ack);
}

The demo here is a simple DS18B20-based thermometer. The temperature sensed by the DS18B20

sensor is displayed on a TM1637-based seven segment displays.

Demo

Demo video link: https://youtu.be/2SP1hiXuvfM.

https://youtu.be/2SP1hiXuvfM

Page | 196

Software SPI and One Wire Bit-Banging

Software SPI is basically bit-banging ordinary GPIO pins to reproduce SPI signals. Software SPI is not

needed unless hardware SPI peripheral is absent in the device or hardware SPI pins are used up for

some other tasks. Though it is slow and require extra coding compared to hardware SPI, it is helpful

for beginners to understand SPI-based hardware as it offers full control over all SPI signals.

Likewise, bit-banging can also be applied to communicate with one wire devices such as DHT11,

DHT22, etc.

In this section, we will see how to use bit-banging to read a DHT11 sensor and show temperature and

relative humidity data on a SPI-based SSD1306 OLED display.

Code

DHT11.h

#define DHT11_pin_init P10_quasi_bidirectional_mode

#define DHT11_pin_HIGH P10_high
#define DHT11_pin_LOW P10_low

#define DHT11_pin_IN P10_get_input

unsigned char values[5];

void DHT11_init(void);
unsigned char DHT11_get_byte(void);
unsigned char DHT11_get_data(void);

Page | 197

DHT11.c

#include "DHT11.h"

extern unsigned char values[5] = {0x00, 0x00, 0x00, 0x00, 0x00};

void DHT11_init(void)
{
 DHT11_pin_init;
 delay_ms(1000);
}

unsigned char DHT11_get_byte(void)
{
 unsigned char s = 0x08;
 unsigned char value = 0x00;

 while(s > 0)
 {
 value <<= 1;
 while(DHT11_pin_IN == LOW);
 large_delay_TMR_0(30);

 if(DHT11_pin_IN == HIGH)
 {
 value |= 1;
 }

 while(DHT11_pin_IN == HIGH);
 s--;
 }
 return value;
}

unsigned char DHT11_get_data(void)
{
 unsigned char s = 0;
 unsigned char check_sum = 0;

 DHT11_pin_HIGH;
 DHT11_pin_LOW;
 large_delay_TMR_0(18000);
 DHT11_pin_HIGH;
 large_delay_TMR_0(26);

 if(DHT11_pin_IN == HIGH)
 {
 return 1;
 }

 large_delay_TMR_0(80);

 if(DHT11_pin_IN == LOW)
 {
 return 2;
 }

 large_delay_TMR_0(80);

 for(s = 0; s <= 4; s++)
 {
 values[s] = DHT11_get_byte();
 }

 DHT11_pin_HIGH;

 for(s = 0; s < 4; s++)
 {
 check_sum += values[s];
 }

 if(check_sum != values[4])

Page | 198

 {
 return 3;
 }
 else
 {
 return 0;
 }
}

font.c

const unsigned char font_regular[92][6] =
{
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // sp
 0x00, 0x00, 0x00, 0x2f, 0x00, 0x00, // !
 0x00, 0x00, 0x07, 0x00, 0x07, 0x00, // "
 0x00, 0x14, 0x7f, 0x14, 0x7f, 0x14, // #
 0x00, 0x24, 0x2a, 0x7f, 0x2a, 0x12, // $
 0x00, 0x62, 0x64, 0x08, 0x13, 0x23, // %
 0x00, 0x36, 0x49, 0x55, 0x22, 0x50, // &
 0x00, 0x00, 0x05, 0x03, 0x00, 0x00, // '
 0x00, 0x00, 0x1c, 0x22, 0x41, 0x00, // (
 0x00, 0x00, 0x41, 0x22, 0x1c, 0x00, //)
 0x00, 0x14, 0x08, 0x3E, 0x08, 0x14, // *
 0x00, 0x08, 0x08, 0x3E, 0x08, 0x08, // +
 0x00, 0x00, 0x00, 0xA0, 0x60, 0x00, // ,
 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, // -
 0x00, 0x00, 0x60, 0x60, 0x00, 0x00, // .
 0x00, 0x20, 0x10, 0x08, 0x04, 0x02, // /
 0x00, 0x3E, 0x51, 0x49, 0x45, 0x3E, // 0
 0x00, 0x00, 0x42, 0x7F, 0x40, 0x00, // 1
 0x00, 0x42, 0x61, 0x51, 0x49, 0x46, // 2
 0x00, 0x21, 0x41, 0x45, 0x4B, 0x31, // 3
 0x00, 0x18, 0x14, 0x12, 0x7F, 0x10, // 4
 0x00, 0x27, 0x45, 0x45, 0x45, 0x39, // 5
 0x00, 0x3C, 0x4A, 0x49, 0x49, 0x30, // 6
 0x00, 0x01, 0x71, 0x09, 0x05, 0x03, // 7
 0x00, 0x36, 0x49, 0x49, 0x49, 0x36, // 8
 0x00, 0x06, 0x49, 0x49, 0x29, 0x1E, // 9
 0x00, 0x00, 0x36, 0x36, 0x00, 0x00, // :
 0x00, 0x00, 0x56, 0x36, 0x00, 0x00, // ;
 0x00, 0x08, 0x14, 0x22, 0x41, 0x00, // <
 0x00, 0x14, 0x14, 0x14, 0x14, 0x14, // =
 0x00, 0x00, 0x41, 0x22, 0x14, 0x08, // >
 0x00, 0x02, 0x01, 0x51, 0x09, 0x06, // ?
 0x00, 0x32, 0x49, 0x59, 0x51, 0x3E, // @
 0x00, 0x7C, 0x12, 0x11, 0x12, 0x7C, // A
 0x00, 0x7F, 0x49, 0x49, 0x49, 0x36, // B
 0x00, 0x3E, 0x41, 0x41, 0x41, 0x22, // C
 0x00, 0x7F, 0x41, 0x41, 0x22, 0x1C, // D
 0x00, 0x7F, 0x49, 0x49, 0x49, 0x41, // E
 0x00, 0x7F, 0x09, 0x09, 0x09, 0x01, // F
 0x00, 0x3E, 0x41, 0x49, 0x49, 0x7A, // G
 0x00, 0x7F, 0x08, 0x08, 0x08, 0x7F, // H
 0x00, 0x00, 0x41, 0x7F, 0x41, 0x00, // I
 0x00, 0x20, 0x40, 0x41, 0x3F, 0x01, // J
 0x00, 0x7F, 0x08, 0x14, 0x22, 0x41, // K
 0x00, 0x7F, 0x40, 0x40, 0x40, 0x40, // L
 0x00, 0x7F, 0x02, 0x0C, 0x02, 0x7F, // M
 0x00, 0x7F, 0x04, 0x08, 0x10, 0x7F, // N
 0x00, 0x3E, 0x41, 0x41, 0x41, 0x3E, // O
 0x00, 0x7F, 0x09, 0x09, 0x09, 0x06, // P
 0x00, 0x3E, 0x41, 0x51, 0x21, 0x5E, // Q
 0x00, 0x7F, 0x09, 0x19, 0x29, 0x46, // R
 0x00, 0x46, 0x49, 0x49, 0x49, 0x31, // S
 0x00, 0x01, 0x01, 0x7F, 0x01, 0x01, // T
 0x00, 0x3F, 0x40, 0x40, 0x40, 0x3F, // U
 0x00, 0x1F, 0x20, 0x40, 0x20, 0x1F, // V
 0x00, 0x3F, 0x40, 0x38, 0x40, 0x3F, // W
 0x00, 0x63, 0x14, 0x08, 0x14, 0x63, // X
 0x00, 0x07, 0x08, 0x70, 0x08, 0x07, // Y
 0x00, 0x61, 0x51, 0x49, 0x45, 0x43, // Z
 0x00, 0x00, 0x7F, 0x41, 0x41, 0x00, // [91
 0x00, 0x02, 0x04, 0x08, 0x10, 0x20, // \92
 0x00, 0x00, 0x41, 0x41, 0x7F, 0x00, //]
 0x00, 0x04, 0x02, 0x01, 0x02, 0x04, // ^
 0x00, 0x40, 0x40, 0x40, 0x40, 0x40, // _

Page | 199

 0x00, 0x00, 0x01, 0x02, 0x04, 0x00, // '
 0x00, 0x20, 0x54, 0x54, 0x54, 0x78, // a
 0x00, 0x7F, 0x48, 0x44, 0x44, 0x38, // b
 0x00, 0x38, 0x44, 0x44, 0x44, 0x20, // c
 0x00, 0x38, 0x44, 0x44, 0x48, 0x7F, // d
 0x00, 0x38, 0x54, 0x54, 0x54, 0x18, // e
 0x00, 0x08, 0x7E, 0x09, 0x01, 0x02, // f
 0x00, 0x18, 0xA4, 0xA4, 0xA4, 0x7C, // g
 0x00, 0x7F, 0x08, 0x04, 0x04, 0x78, // h
 0x00, 0x00, 0x44, 0x7D, 0x40, 0x00, // i
 0x00, 0x40, 0x80, 0x84, 0x7D, 0x00, // j
 0x00, 0x7F, 0x10, 0x28, 0x44, 0x00, // k
 0x00, 0x00, 0x41, 0x7F, 0x40, 0x00, // l
 0x00, 0x7C, 0x04, 0x18, 0x04, 0x78, // m
 0x00, 0x7C, 0x08, 0x04, 0x04, 0x78, // n
 0x00, 0x38, 0x44, 0x44, 0x44, 0x38, // o
 0x00, 0xFC, 0x24, 0x24, 0x24, 0x18, // p
 0x00, 0x18, 0x24, 0x24, 0x18, 0xFC, // q
 0x00, 0x7C, 0x08, 0x04, 0x04, 0x08, // r
 0x00, 0x48, 0x54, 0x54, 0x54, 0x20, // s
 0x00, 0x04, 0x3F, 0x44, 0x40, 0x20, // t
 0x00, 0x3C, 0x40, 0x40, 0x20, 0x7C, // u
 0x00, 0x1C, 0x20, 0x40, 0x20, 0x1C, // v
 0x00, 0x3C, 0x40, 0x30, 0x40, 0x3C, // w
 0x00, 0x44, 0x28, 0x10, 0x28, 0x44, // x
 0x00, 0x1C, 0xA0, 0xA0, 0xA0, 0x7C, // y
 0x00, 0x44, 0x64, 0x54, 0x4C, 0x44, // z
 0x14, 0x14, 0x14, 0x14, 0x14, 0x14 // horiz lines
};

SSD1306.h

#define SSD1306_CS_PIN_HIGH P03_high
#define SSD1306_CS_PIN_LOW P03_low

#define SSD1306_DC_PIN_HIGH P04_high
#define SSD1306_DC_PIN_LOW P04_low

#define SSD1306_RST_PIN_HIGH P05_high
#define SSD1306_RST_PIN_LOW P05_low

#define SSD1306_SDA_PIN_HIGH P06_high
#define SSD1306_SDA_PIN_LOW P06_low

#define SSD1306_SCK_PIN_HIGH P07_high
#define SSD1306_SCK_PIN_LOW P07_low

#define DAT 1
#define CMD 0

#define Set_Lower_Column_Start_Address_CMD 0x00
#define Set_Higher_Column_Start_Address_CMD 0x10
#define Set_Memory_Addressing_Mode_CMD 0x20
#define Set_Column_Address_CMD 0x21
#define Set_Page_Address_CMD 0x22
#define Set_Display_Start_Line_CMD 0x40
#define Set_Contrast_Control_CMD 0x81
#define Set_Charge_Pump_CMD 0x8D
#define Set_Segment_Remap_CMD 0xA0
#define Set_Entire_Display_ON_CMD 0xA4
#define Set_Normal_or_Inverse_Display_CMD 0xA6
#define Set_Multiplex_Ratio_CMD 0xA8
#define Set_Display_ON_or_OFF_CMD 0xAE
#define Set_Page_Start_Address_CMD 0xB0
#define Set_COM_Output_Scan_Direction_CMD 0xC0

#define Set_Display_Offset_CMD 0xD3
#define Set_Display_Clock_CMD 0xD5
#define Set_Pre_charge_Period_CMD 0xD9
#define Set_Common_HW_Config_CMD 0xDA
#define Set_VCOMH_Level_CMD 0xDB
#define Set_NOP_CMD 0xE3

#define Horizontal_Addressing_Mode 0x00
#define Vertical_Addressing_Mode 0x01
#define Page_Addressing_Mode 0x02

Page | 200

#define Disable_Charge_Pump 0x00
#define Enable_Charge_Pump 0x04

#define Column_Address_0_Mapped_to_SEG0 0x00
#define Column_Address_0_Mapped_to_SEG127 0x01

#define Normal_Display 0x00
#define Entire_Display_ON 0x01

#define Non_Inverted_Display 0x00
#define Inverted_Display 0x01

#define Display_OFF 0x00
#define Display_ON 0x01

#define Scan_from_COM0_to_63 0x00
#define Scan_from_COM63_to_0 0x08

#define x_size 128
#define x_max x_size
#define x_min 0
#define y_size 64
#define y_max 8
#define y_min 0

#define ON 1
#define OFF 0

#define ROUND 1
#define SQUARE 0

#define buffer_size 1024//(x_max * y_max)

unsigned char buffer[buffer_size];

void OLED_init(void);
void OLED_reset_sequence(void);
void OLED_write(unsigned char value, unsigned char type);
void OLED_gotoxy(unsigned char x_pos, unsigned char y_pos);
void OLED_fill(unsigned char bmp_data);
void OLED_clear_screen(void);
void OLED_clear_buffer(void);
void OLED_cursor(unsigned char x_pos, unsigned char y_pos);
void OLED_draw_bitmap(unsigned char xb, unsigned char yb, unsigned char xe, unsigned char ye, unsigned char b
mp_img[]);
void OLED_print_char(unsigned char x_pos, unsigned char y_pos, unsigned char ch);
void OLED_print_string(unsigned char x_pos, unsigned char y_pos, unsigned char *ch);
void OLED_print_chr(unsigned char x_pos, unsigned char y_pos, signed long value);
void OLED_print_int(unsigned char x_pos, unsigned char y_pos, signed long value);
void OLED_print_decimal(unsigned char x_pos, unsigned char y_pos, unsigned long value, unsigned char points);
void OLED_print_float(unsigned char x_pos, unsigned char y_pos, float value, unsigned char points);
void Draw_Pixel(unsigned char x_pos, unsigned char y_pos, short colour);
void Draw_Line(signed long x1, signed long y1, signed long x2, signed long y2, short colour);
void Draw_Rectangle(signed long x1, signed long y1, signed long x2, signed long y2, short fill, short colour,
 short type);
void Draw_Circle(signed long xc, signed long yc, signed long radius, short fill, short colour);

SSD1306.c

#include "SSD1306.h"
#include "fonts.c"

void OLED_init(void)
{
 P03_push_pull_mode;
 P04_push_pull_mode;
 P05_push_pull_mode;
 P06_push_pull_mode;
 P07_push_pull_mode;

 OLED_clear_buffer();

 OLED_reset_sequence();

Page | 201

 OLED_write((Set_Display_ON_or_OFF_CMD + Display_OFF) , CMD);;

 OLED_write(Set_Display_Clock_CMD, CMD);
 OLED_write(0x80, CMD);

 OLED_write(Set_Multiplex_Ratio_CMD, CMD);
 OLED_write(0x3F, CMD);

 OLED_write(Set_Display_Offset_CMD, CMD);
 OLED_write(0x00, CMD);

 OLED_write((Set_Display_Start_Line_CMD | 0x00), CMD);

 OLED_write(Set_Charge_Pump_CMD, CMD);
 OLED_write((Set_Higher_Column_Start_Address_CMD | 0x04), CMD);

 OLED_write(Set_Memory_Addressing_Mode_CMD, CMD);
 OLED_write(Page_Addressing_Mode, CMD);

 OLED_write((Set_Segment_Remap_CMD | Column_Address_0_Mapped_to_SEG127), CMD);

 OLED_write((Set_COM_Output_Scan_Direction_CMD | Scan_from_COM63_to_0), CMD);

 OLED_write(Set_Common_HW_Config_CMD, CMD);
 OLED_write(0x12, CMD);

 OLED_write(Set_Contrast_Control_CMD, CMD);
 OLED_write(0xCF, CMD);

 OLED_write(Set_Pre_charge_Period_CMD, CMD);
 OLED_write(0xF1, CMD);

 OLED_write(Set_VCOMH_Level_CMD, CMD);
 OLED_write(0x40, CMD);

 OLED_write((Set_Entire_Display_ON_CMD | Normal_Display), CMD);

 OLED_write((Set_Normal_or_Inverse_Display_CMD | Non_Inverted_Display), CMD);

 OLED_write((Set_Display_ON_or_OFF_CMD + Display_ON) , CMD);

 OLED_gotoxy(0, 0);

 OLED_clear_screen();
}

void OLED_reset_sequence(void)
{
 SSD1306_SCK_PIN_HIGH;
 SSD1306_RST_PIN_LOW;
 delay_ms(60);
 SSD1306_RST_PIN_HIGH;
 SSD1306_SCK_PIN_LOW;
 delay_ms(60);
}

void OLED_write(unsigned char value, unsigned char type)
{
 unsigned char s = 0x08;

 SSD1306_CS_PIN_LOW;

 switch(type)
 {
 case DAT:
 {
 SSD1306_DC_PIN_HIGH;
 break;
 }

 default:
 {
 SSD1306_DC_PIN_LOW;
 break;

Page | 202

 }
 }

 while(s > 0)
 {
 if((value & 0x80) != 0x00)
 {
 SSD1306_SDA_PIN_HIGH;
 }
 else
 {
 SSD1306_SDA_PIN_LOW;
 }

 SSD1306_SCK_PIN_HIGH;
 SSD1306_SCK_PIN_LOW;

 value <<= 1;
 s--;
 };

 SSD1306_CS_PIN_HIGH;
}

void OLED_gotoxy(unsigned char x_pos, unsigned char y_pos)
{
 OLED_write((Set_Page_Start_Address_CMD + y_pos), CMD);
 OLED_write(((x_pos & 0x0F) | Set_Lower_Column_Start_Address_CMD), CMD);
 OLED_write((((x_pos & 0xF0) >> 0x04) | Set_Higher_Column_Start_Address_CMD), CMD);
}

void OLED_fill(unsigned char bmp_data)
{
 unsigned char x_pos = 0x00;
 unsigned char page = 0x00;

 for(page = y_min; page < y_max; page++)
 {
 OLED_write((Set_Page_Start_Address_CMD + page), CMD);
 OLED_write(Set_Lower_Column_Start_Address_CMD, CMD);
 OLED_write(Set_Higher_Column_Start_Address_CMD, CMD);

 for(x_pos = x_min; x_pos < x_max; x_pos++)
 {
 OLED_write(bmp_data, DAT);
 }
 }
}

void OLED_clear_screen(void)
{
 OLED_fill(0x00);
}

void OLED_clear_buffer(void)
{
 unsigned long s = 0x00;

 for(s = 0; s < buffer_size; s++)
 {
 buffer[s] = 0x00;
 }
}

void OLED_cursor(unsigned char x_pos, unsigned char y_pos)
{
 unsigned char i = 0x00;

 if(y_pos != 0x00)
 {
 if(x_pos == 1)
 {

Page | 203

 OLED_gotoxy(0x00, (y_pos + 0x02));
 }
 else
 {
 OLED_gotoxy((0x50 + ((x_pos - 0x02) * 0x06)), (y_pos + 0x02));
 }

 for(i = 0; i < 6; i++)
 {
 OLED_write(0xFF, DAT);
 }
 }
}

void OLED_draw_bitmap(unsigned char xb, unsigned char yb, unsigned char xe, unsigned char ye, unsigned char b
mp_img[])
{
 unsigned long s = 0x0000;
 unsigned char x_pos = 0x00;
 unsigned char y_pos = 0x00;

 for(y_pos = yb; y_pos <= ye; y_pos++)
 {
 OLED_gotoxy(xb, y_pos);
 for(x_pos = xb; x_pos < xe; x_pos++)
 {
 OLED_write(bmp_img[s++], DAT);
 }
 }
}

void OLED_print_char(unsigned char x_pos, unsigned char y_pos, unsigned char ch)
{
 unsigned char chr = 0x00;
 unsigned char s = 0x00;

 chr = (ch - 32);

 if(x_pos > (x_max - 6))
 {
 x_pos = 0;
 y_pos++;
 }
 OLED_gotoxy(x_pos, y_pos);

 for(s = 0x00; s < 0x06; s++)
 {
 OLED_write(font_regular[chr][s], DAT);
 }
}

void OLED_print_string(unsigned char x_pos, unsigned char y_pos, unsigned char *ch)
{
 unsigned char chr = 0x00;
 unsigned char i = 0x00;
 unsigned char j = 0x00;

 while(ch[j] != '\0')
 {
 chr = (ch[j] - 32);

 if(x_pos > (x_max - 0x06))
 {
 x_pos = 0x00;
 y_pos++;
 }
 OLED_gotoxy(x_pos, y_pos);

 for(i = 0x00; i < 0x06; i++)
 {
 OLED_write(font_regular[chr][i], DAT);
 }

 j++;
 x_pos += 6;
 }

Page | 204

}

void OLED_print_chr(unsigned char x_pos, unsigned char y_pos, signed long value)
{
 unsigned char ch = 0x00;

 if(value < 0x00)
 {
 OLED_print_char(x_pos, y_pos, '-');
 value = -value;
 }
 else
 {
 OLED_print_char(x_pos, y_pos,' ');
 }

 if((value > 99) && (value <= 999))
 {
 ch = (value / 100);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));
 ch = ((value % 100) / 10);
 OLED_print_char((x_pos + 12), y_pos , (48 + ch));
 ch = (value % 10);
 OLED_print_char((x_pos + 18), y_pos , (48 + ch));
 }
 else if((value > 9) && (value <= 99))
 {
 ch = ((value % 100) / 10);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));
 ch = (value % 10);
 OLED_print_char((x_pos + 12), y_pos , (48 + ch));
 OLED_print_char((x_pos + 18), y_pos , 32);
 }
 else if((value >= 0) && (value <= 9))
 {
 ch = (value % 10);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));
 OLED_print_char((x_pos + 12), y_pos , 32);
 OLED_print_char((x_pos + 18), y_pos , 32);
 }
}

void OLED_print_int(unsigned char x_pos, unsigned char y_pos, signed long value)
{
 unsigned char ch = 0x00;

 if(value < 0)
 {
 OLED_print_char(x_pos, y_pos, '-');
 value = -value;
 }
 else
 {
 OLED_print_char(x_pos, y_pos,' ');
 }

 if(value > 9999)
 {
 ch = (value / 10000);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));

 ch = ((value % 10000)/ 1000);
 OLED_print_char((x_pos + 12), y_pos , (48 + ch));

 ch = ((value % 1000) / 100);
 OLED_print_char((x_pos + 18), y_pos , (48 + ch));

 ch = ((value % 100) / 10);
 OLED_print_char((x_pos + 24), y_pos , (48 + ch));

 ch = (value % 10);
 OLED_print_char((x_pos + 30), y_pos , (48 + ch));
 }

 else if((value > 999) && (value <= 9999))
 {
 ch = ((value % 10000)/ 1000);

Page | 205

 OLED_print_char((x_pos + 6), y_pos , (48 + ch));

 ch = ((value % 1000) / 100);
 OLED_print_char((x_pos + 12), y_pos , (48 + ch));

 ch = ((value % 100) / 10);
 OLED_print_char((x_pos + 18), y_pos , (48 + ch));

 ch = (value % 10);
 OLED_print_char((x_pos + 24), y_pos , (48 + ch));
 OLED_print_char((x_pos + 30), y_pos , 32);
 }
 else if((value > 99) && (value <= 999))
 {
 ch = ((value % 1000) / 100);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));

 ch = ((value % 100) / 10);
 OLED_print_char((x_pos + 12), y_pos , (48 + ch));

 ch = (value % 10);
 OLED_print_char((x_pos + 18), y_pos , (48 + ch));
 OLED_print_char((x_pos + 24), y_pos , 32);
 OLED_print_char((x_pos + 30), y_pos , 32);
 }
 else if((value > 9) && (value <= 99))
 {
 ch = ((value % 100) / 10);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));

 ch = (value % 10);
 OLED_print_char((x_pos + 12), y_pos , (48 + ch));

 OLED_print_char((x_pos + 18), y_pos , 32);
 OLED_print_char((x_pos + 24), y_pos , 32);
 OLED_print_char((x_pos + 30), y_pos , 32);
 }
 else
 {
 ch = (value % 10);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));
 OLED_print_char((x_pos + 12), y_pos , 32);
 OLED_print_char((x_pos + 18), y_pos , 32);
 OLED_print_char((x_pos + 24), y_pos , 32);
 OLED_print_char((x_pos + 30), y_pos , 32);
 }
}

void OLED_print_decimal(unsigned char x_pos, unsigned char y_pos, unsigned long value, unsigned char points)
{
 unsigned char ch = 0x00;

 OLED_print_char(x_pos, y_pos, '.');

 ch = (value / 1000);
 OLED_print_char((x_pos + 6), y_pos , (48 + ch));

 if(points > 1)
 {
 ch = ((value % 1000) / 100);
 OLED_print_char((x_pos + 12), y_pos , (48 + ch));

 if(points > 2)
 {
 ch = ((value % 100) / 10);
 OLED_print_char((x_pos + 18), y_pos , (48 + ch));

 if(points > 3)
 {
 ch = (value % 10);
 OLED_print_char((x_pos + 24), y_pos , (48 + ch));
 }
 }
 }
}

Page | 206

void OLED_print_float(unsigned char x_pos, unsigned char y_pos, float value, unsigned char points)
{
 signed long tmp = 0x0000;

 tmp = value;
 OLED_print_int(x_pos, y_pos, tmp);
 tmp = ((value - tmp) * 10000);

 if(tmp < 0)
 {
 tmp = -tmp;
 }

 if((value >= 9999) && (value < 99999))
 {
 OLED_print_decimal((x_pos + 36), y_pos, tmp, points);
 }
 else if((value >= 999) && (value < 9999))
 {
 OLED_print_decimal((x_pos + 30), y_pos, tmp, points);
 }
 else if((value >= 99) && (value < 999))
 {
 OLED_print_decimal((x_pos + 24), y_pos, tmp, points);
 }
 else if((value >= 9) && (value < 99))
 {
 OLED_print_decimal((x_pos + 18), y_pos, tmp, points);
 }
 else if(value < 9)
 {
 OLED_print_decimal((x_pos + 12), y_pos, tmp, points);
 if((value) < 0)
 {
 OLED_print_char(x_pos, y_pos, '-');
 }
 else
 {
 OLED_print_char(x_pos, y_pos, ' ');
 }
 }
}

void Draw_Pixel(unsigned char x_pos, unsigned char y_pos, short colour)
{
 unsigned char value = 0x00;
 unsigned char page = 0x00;
 unsigned char bit_pos = 0x00;

 page = (y_pos / y_max);
 bit_pos = (y_pos - (page * y_max));
 value = buffer[((page * x_max) + x_pos)];

 if((colour & 0x01) != 0)
 {
 value |= (1 << bit_pos);
 }
 else
 {
 value &= (~(1 << bit_pos));
 }

 buffer[((page * x_max) + x_pos)] = value;
 OLED_gotoxy(x_pos, page);
 OLED_write(value, DAT);
}

void Draw_Line(signed long x1, signed long y1, signed long x2, signed long y2, short colour)
{
 signed long dx = 0x0000;
 signed long dy = 0x0000;
 signed long stepx = 0x0000;
 signed long stepy = 0x0000;
 signed long fraction = 0x0000;

Page | 207

 dy = (y2 - y1);
 dx = (x2 - x1);

 if (dy < 0)
 {
 dy = -dy;
 stepy--;
 }
 else
 {
 stepy = 1;
 }

 if (dx < 0)
 {
 dx = -dx;
 stepx--;
 }
 else
 {
 stepx = 1;
 }

 dx <<= 1;
 dy <<= 1;

 Draw_Pixel(((unsigned char)x1), ((unsigned char)y1), colour);

 if(dx > dy)
 {
 fraction = (dy - (dx >> 1));
 while (x1 != x2)
 {
 if(fraction >= 0)
 {
 y1 += stepy;
 fraction -= dx;
 }

 x1 += stepx;
 fraction += dy;

 Draw_Pixel(((unsigned char)x1), ((unsigned char)y1), colour);
 }
 }
 else
 {
 fraction = (dx - (dy >> 1));
 while (y1 != y2)
 {
 if (fraction >= 0)
 {
 x1 += stepx;
 fraction -= dy;
 }

 y1 += stepy;
 fraction += dx;

 Draw_Pixel(((unsigned char)x1), ((unsigned char)y1), colour);
 }
 }
}

void Draw_Rectangle(signed long x1, signed long y1, signed long x2, signed long y2, short fill, short colour,
 short type)
{
 unsigned char i = 0x00;
 unsigned char xmin = 0x00;
 unsigned char xmax = 0x00;
 unsigned char ymin = 0x00;
 unsigned char ymax = 0x00;

 if(fill == ON)
 {
 if(x1 < x2)
 {
 xmin = x1;

Page | 208

 xmax = x2;
 }
 else
 {
 xmin = x2;
 xmax = x1;
 }

 if(y1 < y2)
 {
 ymin = y1;
 ymax = y2;
 }
 else
 {
 ymin = y2;
 ymax = y1;
 }

 for(i = ymin; i <= ymax; ++i)
 {
 Draw_Line(xmin, i, xmax, i, colour);
 }

 }

 else
 {
 Draw_Line(x1, y1, x2, y1, colour);
 Draw_Line(x1, y2, x2, y2, colour);
 Draw_Line(x1, y1, x1, y2, colour);
 Draw_Line(x2, y1, x2, y2, colour);
 }

 if(type != SQUARE)
 {
 Draw_Pixel(((unsigned char)x1), ((unsigned char)y1), ~colour);
 Draw_Pixel(((unsigned char)x1), ((unsigned char)y2), ~colour);
 Draw_Pixel(((unsigned char)x2), ((unsigned char)y1), ~colour);

 Draw_Pixel(((unsigned char)x2), ((unsigned char)y2), ~colour);
 }
}

void Draw_Circle(signed long xc, signed long yc, signed long radius, short fill, short colour)
{
 signed long a = 0x0000;
 signed long b = 0x0000;
 signed long P = 0x0000;

 b = radius;
 P = (1 - b);

 do
 {
 if(fill == ON)
 {
 Draw_Line((xc - a), (yc + b), (xc + a), (yc + b), colour);
 Draw_Line((xc - a), (yc - b), (xc + a), (yc - b), colour);
 Draw_Line((xc - b), (yc + a), (xc + b), (yc + a), colour);
 Draw_Line((xc - b), (yc - a), (xc + b), (yc - a), colour);
 }
 else
 {
 Draw_Pixel((xc + a), (yc + b), colour);
 Draw_Pixel((xc + b), (yc + a), colour);
 Draw_Pixel((xc - a), (yc + b), colour);
 Draw_Pixel((xc - b), (yc + a), colour);
 Draw_Pixel((xc + b), (yc - a), colour);
 Draw_Pixel((xc + a), (yc - b), colour);
 Draw_Pixel((xc - a), (yc - b), colour);
 Draw_Pixel((xc - b), (yc - a), colour);
 }

 if(P < 0)
 {
 P += (3 + (2 * a++));

Page | 209

 }
 else
 {
 P += (5 + (2 * ((a++) - (b--))));
 }
 }while(a <= b);
}

main.c

#include "STC8xxx.h"
#include "BSP.h"
#include "DHT11.c"
#include "SSD1306.c"

void setup(void);

void main(void)
{
 unsigned char state = 0x00;

 setup();

 OLED_print_string(24, 0, "Temp/Deg C");
 OLED_print_string(24, 4, "Rel.Hum /%");

 while(1)
 {
 state = DHT11_get_data();

 switch(state)
 {
 case 1:
 {
 }
 case 2:
 {
 OLED_print_string(56, 2, " ");
 OLED_print_string(56, 6, " ");
 break;
 }
 case 3:
 {
 OLED_print_string(56, 2, "--");
 OLED_print_string(56, 6, "--");
 break;
 }
 default:
 {
 OLED_print_chr(55, 2, values[2]);
 OLED_print_chr(55, 6, values[0]);
 break;
 }
 }

 delay_ms(1000);
 };
}

void setup(void)
{
 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_no_output, MCLK_out_P54);

 DHT11_init();
 OLED_init();
}

Page | 210

Schematic

Explanation

DHT11’s logical one and zero timing diagrams below show that it too uses time-slotting mechanism

just like DS18B20. However, its way of communication or protocol is not same as that of DS18B20’s

and codes are not compatible amongst each other.

From the above timing diagrams, it is clear that the difference between these two signals is the high

time. Thus, after sensing low input we should wait for about 30µs before trying to determine if the

sensor sent a zero time-slot or a one time-slot. This is so because if it sent a logical zero then after

30µs of delay, there should be no floating or logic high signal in DHT11’s communication pin. If it is

otherwise then a logical one time slot should be expected. This is what the following code does.

unsigned char DHT11_get_byte(void)
{
 unsigned char s = 0x08;
 unsigned char value = 0x00;

 while(s > 0)
 {
 value <<= 1;
 while(DHT11_pin_IN == LOW);
 large_delay_TMR_0(30);

 if(DHT11_pin_IN == HIGH)
 {
 value |= 1;
 }

Page | 211

 while(DHT11_pin_IN == HIGH);
 s--;
 }
 return value;
}

At this point, it is necessary to mention that instead of traditional software-based delay library that

relies on wasting CPU cycles, hardware-based delay library has been used in this code. This library

(tmr_delay.h) generates more accurate time delays.

Now let’s see how SSD1306 OLED display can be bit-banged. First, notice its timing diagram.

The timing diagram suggests:

• SPI clock (SCLK) is held low in idle mode.

• SPI data (SDIN) is shifted or clocked during the rising edge or low-to-high transition of SPI

clock.

• SPI chip/slave select (CS) should be held low during data transfer only and for the rest of the

times, it should be held high.

All these points suggest us that it is a Mode 0 SPI communication and we can craft a code using these

data as shown below. It is a mere timing diagram to code translation.

void OLED_write(unsigned char value, unsigned char type)
{
 unsigned char s = 0x08;

 SSD1306_CS_PIN_LOW;

 switch(type)
 {
 case DAT:
 {
 SSD1306_DC_PIN_HIGH;
 break;
 }

 default:
 {
 SSD1306_DC_PIN_LOW;
 break;
 }
 }

 while(s > 0)
 {
 if((value & 0x80) != 0x00)
 {
 SSD1306_SDA_PIN_HIGH;
 }
 else
 {
 SSD1306_SDA_PIN_LOW;

Page | 212

 }

 SSD1306_SCK_PIN_HIGH;
 SSD1306_SCK_PIN_LOW;

 value <<= 1;
 s--;
 };

 SSD1306_CS_PIN_HIGH;
}

Demo

Demo video link: https://youtu.be/IP4_gTHhLRI.

https://youtu.be/IP4_gTHhLRI

Page | 213

Software I2C and Software UART

After trying to grasp the past software-based communication techniques, I think reader should now

have some idea of the tricks employed to do the tasks.

At this final stage, we are left with software I2C and software UART. The tricks behind software I2C

are similar to our past encounters with one wire communications and TM1637. However, software

UART implementation is a bit complicated.

The demo for this example is a simple multi-UART chatting. One UART is hardware-based while the

other is based on software. The chatting between the UARTs is displayed on I2C-based serial LCD. This

LCD is driven using I2C-based PCF8574 GPIO expander.

Code

SW_I2C.h

#define SDA_DIR_OUT() P10_push_pull_mode
#define SDA_DIR_IN() P10_input_mode

#define SCL_DIR_OUT() P11_push_pull_mode
#define SCL_DIR_IN() P11_input_mode

#define SDA_HIGH() P10_high
#define SDA_LOW() P10_low

#define SCL_HIGH() P11_high
#define SCL_LOW() P11_low

#define SDA_IN() P10_get_input

#define I2C_ACK 0xFF
#define I2C_NACK 0x00

Page | 214

#define I2C_timeout 1000

void SW_I2C_init(void);
void SW_I2C_start(void);
void SW_I2C_stop(void);
unsigned char SW_I2C_read(unsigned char ack);
void SW_I2C_write(unsigned char value);
void SW_I2C_ACK_NACK(unsigned char mode);
unsigned char SW_I2C_wait_ACK(void);

SW_I2C.c

#include "SW_I2C.h"

void SW_I2C_init(void)
{
 SDA_DIR_OUT();
 SCL_DIR_OUT();
 delay_ms(10);
 SDA_HIGH();
 SCL_HIGH();
}

void SW_I2C_start(void)
{
 SDA_DIR_OUT();
 SDA_HIGH();
 SCL_HIGH();
 delay_us(40);
 SDA_LOW();
 delay_us(40);
 SCL_LOW();
}

void SW_I2C_stop(void)
{
 SDA_DIR_OUT();
 SDA_LOW();
 SCL_LOW();
 delay_us(40);
 SDA_HIGH();
 SCL_HIGH();
 delay_us(40);
}

unsigned char SW_I2C_read(unsigned char ack)
{
 unsigned char i = 8;
 unsigned char j = 0;

 SDA_DIR_IN();

 while(i > 0)
 {
 SCL_LOW();
 delay_us(20);
 SCL_HIGH();
 delay_us(20);
 j <<= 1;

 if(SDA_IN() != 0x00)
 {
 j++;
 }

 delay_us(10);
 i--;
 };

 switch(ack)

Page | 215

 {
 case I2C_ACK:
 {
 SW_I2C_ACK_NACK(I2C_ACK);;
 break;
 }
 default:
 {
 SW_I2C_ACK_NACK(I2C_NACK);;
 break;
 }
 }

 return j;
}

void SW_I2C_write(unsigned char value)
{
 unsigned char i = 8;

 SDA_DIR_OUT();
 SCL_LOW();

 while(i > 0)
 {

 if(((value & 0x80) >> 7) != 0x00)
 {
 SDA_HIGH();
 }
 else
 {
 SDA_LOW();
 }

 value <<= 1;
 delay_us(20);
 SCL_HIGH();
 delay_us(20);
 SCL_LOW();
 delay_us(20);
 i--;
 };
}

void SW_I2C_ACK_NACK(unsigned char mode)
{
 SCL_LOW();
 SDA_DIR_OUT();

 switch(mode)
 {
 case I2C_ACK:
 {
 SDA_LOW();
 break;
 }
 default:
 {
 SDA_HIGH();
 break;
 }
 }

 delay_us(20);
 SCL_HIGH();
 delay_us(20);
 SCL_LOW();
}

unsigned char SW_I2C_wait_ACK(void)
{
 signed int timeout = 0;

Page | 216

 SDA_DIR_IN();

 SDA_HIGH();
 delay_us(10);
 SCL_HIGH();
 delay_us(10);

 while(SDA_IN() != 0x00)
 {
 timeout++;

 if(timeout > I2C_timeout)
 {
 SW_I2C_stop();
 return 1;
 }
 };

 SCL_LOW();
 return 0;
}

PCF8574.h

#include "SW_I2C.c"

#define PCF8574_address 0x4E

#define PCF8574_write_cmd PCF8574_address
#define PCF8574_read_cmd (PCF8574_address | 1)

void PCF8574_init(void);
unsigned char PCF8574_read(void);
void PCF8574_write(unsigned char data_byte);

PCF8574.c

#include "PCF8574.h"

void PCF8574_init(void)
{
 SW_I2C_init();
 delay_ms(10);
}

unsigned char PCF8574_read(void)
{
 unsigned char port_byte = 0;

 SW_I2C_start();
 SW_I2C_write(PCF8574_read_cmd);
 port_byte = SW_I2C_read(I2C_NACK);
 SW_I2C_stop();

 return port_byte;
}

void PCF8574_write(unsigned char data_byte)
{
 SW_I2C_start();
 SW_I2C_write(PCF8574_write_cmd);
 SW_I2C_ACK_NACK(I2C_ACK);
 SW_I2C_write(data_byte);
 SW_I2C_ACK_NACK(I2C_ACK);
 SW_I2C_stop();
}

Page | 217

LCD_2_Wire.h

#include "PCF8574.c"

#define clear_display 0x01
#define goto_home 0x02

#define cursor_direction_inc (0x04 | 0x02)
#define cursor_direction_dec (0x04 | 0x00)
#define display_shift (0x04 | 0x01)
#define display_no_shift (0x04 | 0x00)

#define display_on (0x08 | 0x04)
#define display_off (0x08 | 0x02)
#define cursor_on (0x08 | 0x02)
#define cursor_off (0x08 | 0x00)
#define blink_on (0x08 | 0x01)
#define blink_off (0x08 | 0x00)

#define _8_pin_interface (0x20 | 0x10)
#define _4_pin_interface (0x20 | 0x00)
#define _2_row_display (0x20 | 0x08)
#define _1_row_display (0x20 | 0x00)
#define _5x10_dots (0x20 | 0x40)
#define _5x7_dots (0x20 | 0x00)

#define BL_ON 1
#define BL_OFF 0

#define dly 2

#define DAT 1
#define CMD 0

void LCD_init(void);
void LCD_toggle_EN(void);
void LCD_send(unsigned char value, unsigned char mode);
void LCD_4bit_send(unsigned char lcd_data);
void LCD_putstr(char *lcd_string);
void LCD_putchar(char char_data);
void LCD_clear_home(void);
void LCD_goto(unsigned char x_pos, unsigned char y_pos);

LCD_2_Wire.c

#include "LCD_2_Wire.h"

static unsigned char bl_state;
static unsigned char data_value;

void LCD_init(void)
{
 PCF8574_init();
 delay_ms(10);

 bl_state = BL_ON;
 data_value = 0x04;
 PCF8574_write(data_value);

 delay_ms(10);

 LCD_send(0x33, CMD);
 LCD_send(0x32, CMD);

 LCD_send((_4_pin_interface | _2_row_display | _5x7_dots), CMD);
 LCD_send((display_on | cursor_off | blink_off), CMD);
 LCD_send((clear_display), CMD);
 LCD_send((cursor_direction_inc | display_no_shift), CMD);
}

Page | 218

void LCD_toggle_EN(void)
{
 data_value |= 0x04;
 PCF8574_write(data_value);
 delay_ms(1);
 data_value &= 0xF9;
 PCF8574_write(data_value);
 delay_ms(1);
}

void LCD_send(unsigned char value, unsigned char mode)
{
 switch(mode)
 {
 case CMD:
 {
 data_value &= 0xF4;
 break;
 }
 case DAT:
 {
 data_value |= 0x01;
 break;
 }
 }

 switch(bl_state)
 {
 case BL_ON:
 {
 data_value |= 0x08;
 break;
 }
 case BL_OFF:
 {
 data_value &= 0xF7;
 break;
 }
 }

 PCF8574_write(data_value);
 LCD_4bit_send(value);
 delay_ms(1);
}

void LCD_4bit_send(unsigned char lcd_data)
{
 unsigned char temp = 0x00;

 temp = (lcd_data & 0xF0);
 data_value &= 0x0F;
 data_value |= temp;
 PCF8574_write(data_value);
 LCD_toggle_EN();

 temp = (lcd_data & 0x0F);
 temp <<= 0x04;
 data_value &= 0x0F;
 data_value |= temp;
 PCF8574_write(data_value);
 LCD_toggle_EN();
}

void LCD_putstr(char *lcd_string)
{
 do
 {
 LCD_putchar(*lcd_string++);
 }while(*lcd_string != '\0') ;
}

void LCD_putchar(char char_data)
{
 if((char_data >= 0x20) && (char_data <= 0x7F))

Page | 219

 {
 LCD_send(char_data, DAT);
 }
}

void LCD_clear_home(void)
{
 LCD_send(clear_display, CMD);
 LCD_send(goto_home, CMD);
}

void LCD_goto(unsigned char x_pos,unsigned char y_pos)
{
 if(y_pos == 0)
 {
 LCD_send((0x80 | x_pos), CMD);
 }
 else
 {
 LCD_send((0x80 | 0x40 | x_pos), CMD);
 }
}

soft_UART.h

#define tmr_max_cnt 0xFFFF

//sysclk
#define sysclk 12000000

//baud rate
#define baud_rate 9600

//T_value
#define _1T 0x01
#define _12T 0x0C

#define tmr_load_value (tmr_max_cnt - (sysclk / 3 / baud_rate / _1T))

sbit RXD_pin = P1^6;
sbit TXD_pin = P1^7;

unsigned char TXing = 0x00;
unsigned char RXing = 0x00;
unsigned char TX_Bit = 0x00;
unsigned char RX_Bit = 0x00;
unsigned char TX_CNT = 0x00;
unsigned char RX_CNT = 0x00;
unsigned char TX_Data = 0x00;
unsigned char RX_Data = 0x00;
unsigned char TX_done = 0x00;
unsigned char RX_done = 0x00;
unsigned char TX_Buffer = 0x00;
unsigned char RX_Buffer = 0x00;

void soft_UART_init(void);

soft_UART.c

#include "soft_UART.h"

void soft_UART_init(void)
{
 TXing = FALSE;
 RXing = FALSE;
 TX_CNT = 0x00;
 RX_CNT = 0x00;
 TX_done = TRUE;

Page | 220

 RX_done = FALSE;

 TMR2_setup(TMR2_sysclk, \
 TMR2_clk_prescalar_1T);

 TMR2_load_counter_16(tmr_load_value);

 TMR2_start;

 _enable_TMR_2_interrupt;
 _enable_global_interrupt;
}

void TMR_2_ISR(void)
interrupt 12
{
 if(RXing == TRUE)
 {
 if(--RX_CNT == 0x00)
 {
 RX_CNT = 0x03;

 if(--RX_Bit == 0x00)
 {
 RX_Buffer = RX_Data;
 RXing = FALSE;
 RX_done = TRUE;
 }

 else
 {
 RX_Data >>= 0x01;

 if(RXD_pin == HIGH)
 {
 RX_Data |= 0x80;
 }
 }
 }
 }

 else if(RXD_pin == FALSE)
 {
 RXing = TRUE;
 RX_CNT = 0x04;
 RX_Bit = 0x09;
 }

 if(--TX_CNT == 0x00)
 {
 TX_CNT = 0x03;

 if(TXing == TRUE)
 {
 if(TX_Bit == 0x00)
 {
 TXD_pin = LOW;
 TX_Data = TX_Buffer;
 TX_Bit = 0x09;
 }

 else
 {
 TX_Data >>= 0x01;

 if(--TX_Bit == 0x00)
 {
 TXD_pin = HIGH;
 TXing = FALSE;
 TX_done = TRUE;
 }

 else
 {
 TXD_pin = CY;
 }
 }

Page | 221

 }
 }
}

main.c

#include "STC8xxx.h"
#include "BSP.h"
#include "LCD_2_Wire.c"
#include "soft_UART.c"

void setup(void);

void main(void)
{
 unsigned char msg1[10] = {"0123456789"};
 unsigned char msg2[10] = {"!@#$%^&*()"};

 char i = 0x00;

 char rcv_s = 0x00;
 char rcv_3 = 0x00;

 setup();

 LCD_goto(0, 0);
 LCD_putstr("TXDs: ");
 LCD_goto(10, 0);
 LCD_putstr("TXD3: ");

 LCD_goto(0, 1);
 LCD_putstr("RXDs: ");
 LCD_goto(10, 1);
 LCD_putstr("RXD3: ");

 while(1)
 {
 for(i = 0; i < 10; i++)
 {
 if(TX_done == TRUE)
 {
 TX_done = FALSE;
 TX_Buffer = msg1[i];
 TXing = TRUE;
 }

 UART3_write_buffer(msg2[i]);

 LCD_goto(5, 0);
 LCD_putchar(msg1[i]);
 LCD_goto(15, 0);
 LCD_putchar(msg2[i]);

 if(RX_done == TRUE)
 {
 RX_done = FALSE;
 rcv_s = RX_Buffer;
 }

 rcv_3 = UART3_read_buffer();

 LCD_goto(5, 1);
 LCD_putchar(rcv_s);
 LCD_goto(15, 1);
 LCD_putchar(rcv_3);

 delay_ms(900);
 }
 };
}

void setup(void)
{

Page | 222

 CLK_set_sys_clk(IRC_24M, 2, MCLK_SYSCLK_div_1, MCLK_out_P54);

 UART3_pin_option(0x00);

 UART3_init(9600, \
 UART3_baud_source_TMR3, \
 UART3_timer_1T, \
 12000000);

 LCD_init();
 LCD_clear_home();
 soft_UART_init();
}

Schematic

Explanation

To use software UART efficiently, the following definitions have to defined properly. Unlike the past

software communications that we have seen so far, software UART requires the use of a timer its

overflow interrupt. Hardware UARTs also need timers for baud rate generation but here in software

UART, a timer has a different but somewhat similar use. UART, itself, is asynchronous in nature and so

its data timings must be as accurate as possible in order to reduce data loss, error and corruption. This

fact becomes a more serious matter when it comes to software UART because not only we are dealing

with an asynchronous communication but we will also be dealing it with software solution instead of

actual hardware.

//sysclk
#define sysclk 12000000

//baud rate
#define baud_rate 9600

//T_value
#define _1T 0x01
#define _12T 0x0C

#define tmr_load_value (tmr_max_cnt - (sysclk / 3 / baud_rate / _1T))

sbit RXD_pin = P1^6;
sbit TXD_pin = P1^7;

Page | 223

Initialization of software UART is pretty easy. There are lot of variables that need to be initialized with

some defaults and the timer to be used should be initialized and started along with the enabling of

the interrupts.

void soft_UART_init(void)
{
 TXing = FALSE;
 RXing = FALSE;
 TX_CNT = 0x00;
 RX_CNT = 0x00;
 TX_done = TRUE;
 RX_done = FALSE;

 TMR2_setup(TMR2_sysclk, \
 TMR2_clk_prescalar_1T);

 TMR2_load_counter_16(tmr_load_value);

 TMR2_start;

 _enable_TMR_2_interrupt;
 _enable_global_interrupt;
}

Inside the timer interrupt, data transmission and reception operations are done independently of the

main loop. The whole operation is done in a similar process as one would expect with a real hardware

UART. There are flags and buffers for both TX and RX operations and the timer’s interrupt is used to

simulate baud rate as perfectly as possible.

void TMR_2_ISR(void)
interrupt 12
{
 if(RXing == TRUE)
 {
 if(--RX_CNT == 0x00)
 {
 RX_CNT = 0x03;

 if(--RX_Bit == 0x00)
 {
 RX_Buffer = RX_Data;
 RXing = FALSE;
 RX_done = TRUE;
 }

 else
 {
 RX_Data >>= 0x01;

 if(RXD_pin == HIGH)
 {
 RX_Data |= 0x80;
 }
 }
 }
 }

 else if(RXD_pin == FALSE)
 {
 RXing = TRUE;
 RX_CNT = 0x04;
 RX_Bit = 0x09;
 }

 if(--TX_CNT == 0x00)
 {
 TX_CNT = 0x03;

 if(TXing == TRUE)
 {
 if(TX_Bit == 0x00)
 {

Page | 224

 TXD_pin = LOW;
 TX_Data = TX_Buffer;
 TX_Bit = 0x09;
 }

 else
 {
 TX_Data >>= 0x01;

 if(--TX_Bit == 0x00)
 {
 TXD_pin = HIGH;
 TXing = FALSE;
 TX_done = TRUE;
 }

 else
 {
 TXD_pin = CY;
 }
 }

 }
 }
}

Demo

Demo video link: https://youtu.be/7AUjfIpg9a0.

https://youtu.be/7AUjfIpg9a0

Page | 225

Epilogue

As with any new microcontroller, I enjoyed developing stuffs for STC micros too. Every hardware
peripheral was a new experience for me, especially the PCA module. The reasons why I love exploring
8051 core-based MCUs are their relative ease of usage, compatibility and similarity. STC
microcontrollers were no exceptions.

There were times during the forging of this work, I did face some odd issues while cherished at some
other points and here in the end I would like share some of them.

• While trying out multichannel ADCs, I did notice significant interference amongst channels
but later I fixed it by changing ADC clock speed.

• The analogue frontend of STC micros need special attention when designing PCBs because
things may not look good if things as stated in the first point happen.

• The more the resolution of an ADC, the more noise it is likely to pick and so external Op-Amp-
based buffering and filtering should be considered. Good external reference voltage source
should be used for good accuracy.

• As with any 8051-based MCU, memory model is a very important stuff and should be
considered in some cases, especially when dealing with pointers and large arrays. The
following link describes memory model in details specifically for Keil C51 C compiler:
https://www.keil.com/support/man/docs/c51/c51_le_memmodels.htm.

• The programmer GUI is a tool that has many optional functions that are really very helpful. I
advise updating the GUI as new releases are uploaded.

• Since STC’s portfolio consists of wide variety of 8051-based MCUs, it is possible to use the
BSP header files I coded in this document and slightly modify for other STC MCUs.

• STC should invest on a free-compiler of its own. In the past, I have criticized many Chinese
semiconductor manufacturers for their lack of software support and STC doesn’t stand
different from the others. The same is true for official development boards.

Finally, I would like to state that STC micros are game changers in the market of 8051-based
microcontrollers. They are reliable, cheap and in fact widely used in Chinese and Asian markets.
Personally, I feel delighted to have introduced them to the non-Chinese world. STC micros are without
any doubt good micros for any new design.

Code Examples and Libraries used in this tutorial can be downloaded from here.

All demo videos of this tutorial can be found in this Youtube playlist.

Happy coding.

Author: Shawon M. Shahryiar
https://www.facebook.com/groups/microarena
https://www.facebook.com/MicroArena 03.12.2021

https://www.keil.com/support/man/docs/c51/c51_le_memmodels.htm
https://drive.google.com/file/d/1TeY9Se_4i9GYbxCrLrPWMeTLi-VVGryI/view?usp=sharing
https://youtube.com/playlist?list=PL-EErZRpDPIWmbv_A1gEZgIDU9Sjo9lZJ
https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

	Documentations and Websites
	STC 8051s vs Other 8051s
	Hardware Tools
	Software Tools
	Programming STC Microcontrollers
	About STC8A8K64S4A12 Microcontroller and its Development Board
	My Customized BSP
	General Purpose Input-Output (GPIO)
	BSP
	Code
	Schematic
	Explanation
	Demo

	Clock System
	BSP
	Code
	Schematic
	Explanation
	Demo

	Interfacing 2x16 LCD
	Code
	LCD.h
	LCD.c
	lcd_print.h
	lcd_print.c
	main.c

	Schematic
	Explanation
	Demo

	External Interrupt (EXTI)
	Code
	Schematic
	Explanation
	Demo

	Analogue Comparator (AC)
	Code
	Schematic
	Explanation
	Demo

	Analogue-to-Digital Converter (ADC)
	Code
	Schematic
	Explanation
	Demo

	IAP/EEPROM
	Code
	Schematic
	Explanation
	Demo

	Timing-Related Hardware Overview
	Timer-Counters
	Enhanced PWM Module
	Programmable Counter Array (PCA)
	Other Timers

	Using Timer 4 as Time-base Generator
	Code
	Schematic
	Explanation
	Demo

	Timer 1 as a Counter
	Code
	Schematic
	Explanation
	Demo

	Using Timer 2 to Multiplex Seven Segment Displays
	Code
	Schematic
	Explanation
	Demo

	Timer 3 as Real Time Clock & Calendar (RTCC)
	Code
	Schematic
	Explanation
	Demo

	NEC IR Remote Decoding with Timer 0 and External Interrupt
	Code
	Schematic
	Explanation
	Demo

	Using Single Channel Enhanced PWM to Drive a Servo Motor
	Code
	Schematic
	Explanation
	Demo

	Using Multi Channel Enhanced PWM to Drive an RGB LED
	Code
	Schematic
	Explanation
	Demo

	Controlling a DC Motor with Complementary PWM
	Code
	Schematic
	Explanation
	Demo

	Using PCA to Measure Frequency
	Code
	Schematic
	Explanation
	Demo

	Using PCA to Measure Pulse Width from HCSR-04 SONAR Module
	Code
	Schematic
	Explanation
	Demo

	Using PCA to Generate PWM
	Code
	Schematic
	Explanation
	Demo

	Using PCA as a High-Speed Pulse Generator
	Code
	Schematic
	Explanation
	Demo

	Using PCA as a Software Timer
	Code
	Schematic
	Explanation
	Demo

	Using PCA to Extend External Interrupt Capability
	Code
	Schematic
	Explanation
	Demo

	Watchdog Timer (WDT)
	Code
	Schematic
	Explanation
	Demo

	Wakeup Timer and Low Power Mode
	Code
	Schematic
	Explanation
	Demo

	Communication Hardware Overview
	I2C
	Code
	I2C.h
	DHT12.h
	DHT12.c
	main.c

	Schematic
	Explanation
	Demo

	SPI
	Code
	SPI.h
	DS3234.h
	DS3234.c
	main.c

	Schematic
	Explanation
	Demo

	UART
	Code
	Schematic
	Explanation
	Demo

	RS485 MODBUS
	Code
	Schematic
	Explanation
	Demo

	One Wire and Bit-Banging Technique
	Code
	one_wire.h
	one_wire.c
	DS18B20.h
	DS18B20.c
	TM1637.h
	TM1637.c
	main.c

	Schematic
	Explanation
	Demo

	Software SPI and One Wire Bit-Banging
	Code
	DHT11.h
	DHT11.c
	font.c
	SSD1306.h
	SSD1306.c
	main.c

	Schematic
	Explanation
	Demo

	Software I2C and Software UART
	Code
	SW_I2C.h
	SW_I2C.c
	PCF8574.h
	PCF8574.c
	LCD_2_Wire.h
	LCD_2_Wire.c
	soft_UART.h
	soft_UART.c
	main.c

	Schematic
	Explanation
	Demo

	Epilogue

